Солнечные батареи для дома как работают – Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Принцип работы солнечной батареи для дома: устройство, схема, эффективность

    Содержание

    Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

    Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.

    Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.

    Содержание

    Принцип работы солнечной батареи

    Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.

    Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

    КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

    Технические характеристики

    Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

    • Непосредственно фотоэлементы / солнечная панель;
    • Инвертор, преобразовывающий постоянный ток в переменный;
    • Контроллер уровня заряда аккумулятора.

    Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

    Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

    (Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

    Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

    Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

    Установка солнечных батарей

    Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

    Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

    Солнечная батарея своими руками

    Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

    Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

    Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

    Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

    Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

    Современные устройства со встроенными солнечными модулями

    • Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
    • Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
    • Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

    Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

    mbhn.ru

    Принцип работы солнечной батареи: как устроена панель

    Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

    Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

    Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

    Содержание статьи:

    Солнечные батареи: терминология

    В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

    По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

    Галерея изображений

    Фото из

    Установка из солнечных панелей позволяет рационально использовать бесплатную, к тому же неисчерпаемую энергию солнечных лучей

    Миниатюрные электростанции, собранные из солнечных батарей, обеспечат энергией неэлектрифицированные объекты и дома, расположенные в регионах с перебоями в поставке электричества

    Установки, перерабатывающие УФ излучение в электроэнергию, занимают минимум места. их располагают на крышах домов, хозпостроек, гаражей, беседок, веранд. Реже их располагают на открытых, не занятых постройками и насаждениями площадках

    Солнечные батареи — незаменимое оборудование для любителей путешествий. Оно обеспечит энергией вдали от источников электропитания

    Использование солнечной энергии предоставит возможность существенно сократить затраты на содержание дач и загородных домов. собрать и установить экономически полезную систему без затруднений можно собственными руками

    Расположенные на корме яхты, палубе корабля или носу катера солнечные батареи обеспечат электроэнергией, благодаря которой можно поддерживать стабильную связь с берегом

    Портативная солнечная панель с аккумулятором исключит возникновение экстремальных ситуаций вдали от населенных пунктов, гарантирует зарядку мобильных устройств для общения с близкими

    Выпускаемые специально для походов легкие компактные зарядные устройства на основе солнечных батарей обеспечат энергией телефоны, рации, планшеты и медиа-технику

    Рациональное использование природных ресурсов

    Обеспечение энергией неэлектрифицированных объектов

    Монтаж солнечных панелей на крыше

    Мобильная солнечная батарея в кемпинге

    Самостоятельный монтаж на дачном участке

    Генератор энергии в морских прогулках

    Портативная солнечная панель с аккумулятором

    Занимающий минимум места прибор

    Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.

    Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для .

    Солнечная батареяСолнечная батарея

    Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

    Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

    Принцип работы солнечной батареиПринцип работы солнечной батареи

    Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор

    Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.

    Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.

    Внутреннее устройство гелиобатареи

    Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

    Солнечная батареяСолнечная батарея

    Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

    Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

    Виды кристаллов фотоэлементов

    Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

    Виды солнечных батарейВиды солнечных батарей

    Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

    Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

    При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

    Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

    1. Монокристаллические.
    2. Поликристаллические.

    Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

    Галерея изображений

    Фото из

    Гелио-электростанция на загородном участке

    Солнечные монокристаллические батареи

    Внешний вид солнечных батарей на монокристаллах

    Монокристаллическая единица солнечной батареи

    Поставка готовой к монтажу солнечной батареи

    Поликристаллический фотоэлемент для солнечной батареи

    Гелио-батарея из поликристаллических фотоэлементов

    Изготовление солнечной батареи своими руками

    У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

    Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

    Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

    Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

    Устройство солнечной батареиУстройство солнечной батареи

    В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

    Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

    Настоящим прорывов в области использования солнечной энергии стала разработка гибких панелей с аморфным фотоэлектрическим кремнием:

    Галерея изображений

    Фото из

    Гибкий вариант солнечной батареи

    Наклейка гибкого фотоэлемента на жалюзи

    Зарядка для мобильников на гибкой батарее

    Устойчивая к механическим воздействиям панель

    Принцип работы солнечной панели

    При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

    В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

    Работа фотоэлектрического преобразователяРабота фотоэлектрического преобразователя

    Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

    Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

    Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

    То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

    Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

    Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

    Работа солнечной батареиРабота солнечной батареи

    Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

    При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

    В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

    При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

    Эффективность батарей гелиосистемы

    Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.

    Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.

    Эффективность солнечных панелей зависит от:

    • температуры воздуха и самой батареи;
    • правильности подбора сопротивления нагрузки;
    • угла падения солнечных лучей;
    • наличия/отсутствия антибликового покрытия;
    • мощности светового потока.

    Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.

    Параллельное и последовательное подсоединениеПараллельное и последовательное подсоединение

    Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно

    Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться , который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.

    Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.

    Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.

    Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.

    И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.

    Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.

    Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.

    Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.

    Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.

    Схема электропитания дома от солнца

    Система солнечного электроснабжения включает:

    1. Гелиопанели.
    2. Контроллер.
    3. .
    4. Инвертор (трансформатор).

    Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.

    Аккумуляторы для гелиопанелейАккумуляторы для гелиопанелей

    Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы

    Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен . Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.

    Выводы и полезное видео по теме

    Принципы работы и не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.

    Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:

    Как устроены солнечные батареи смотрите в следующем видеоролике:

    Сборка солнечной панели из фотоэлементов своими руками:

    Каждый элемент в коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.

    В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

    sovet-ingenera.com

    Принцип работы солнечной батареи — как работает гелиобатарея ,виды, плюсы и минусы

    Здесь вы узнаете:

    Принцип работы солнечной батареи основан на фотоэлектрическом эффекте. Солнечный свет, попадая на кремниевый полупроводник, преобразуется в электрический ток. Затем он накапливается в аккумуляторах и используется для бытовых нужд.

    Принцип работы солнечных батарей

    Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

    princip-raboty-solnechnoy-batarei-2.jpeg

    Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

    Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

    При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

    Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

    princip-raboty-solnechnoy-batarei.jpeg

    Технические характеристики

    Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

    • Непосредственно фотоэлементы / солнечная панель;
    • Инвертор, преобразовывающий постоянный ток в переменный;
    • Контроллер уровня заряда аккумулятора.

    1229e4c7f6a1bcbdd9514d74dc9e30d1.jpg

    Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

    Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

    9f95ec1575bdf794d5447052335159b0.png

    (Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

    Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

    Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

    Внутреннее устройство гелиобатареи

    Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.

    solne4najabatareja_3-430x270.jpg
    Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию

    Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.

    Виды кристаллов фотоэлементов

    Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.

    solnechnie_batarei_1-430x255.jpg
    Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут

    Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.

    При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.

    Кремниевые пластины фотоэлементов различаются по технологии изготовления на:

    1. Монокристаллические.
    2. Поликристаллические.

    Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.

    У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.

    Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.

    Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.

    Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.

    solncebatar5-1-430x294.jpg
    В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам

    Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.

    Принцип работы солнечной панели

    При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.

    В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.

    solne4najabatareja9-430x271.jpg
    Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами

    Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.

    Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.

    То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.

    Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.

    Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.

    solnechnayabatareya7-430x254.jpg
    Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока

    При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.

    В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.

    При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.

    Виды солнечных батарей

    В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

    I. Классификация по типу их устройства:

    1. 1. Гибкие;
    2. 2. Жёсткие.

    II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

    1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью. Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании. Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;
    2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;
    3. Солнечные батареи, фотоэлемент которых выполнен из селена;
    4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;
    5. Из органических соединений;
    6. Из арсенида галлия
    7. Из нескольких материалов одновременно.

    Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

    Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).

    Другие материалы не получили широкого распространения в связи с большой стоимостью.

    Сфера применения солнечной энергии

    Есть три направления использования солнечной энергии:

    • Экономия электроэнергии. Солнечные панели позволяют отказаться от централизованного электроснабжения или уменьшить его потребление, а также продавать излишки электричества электроснабжающей компании.
    • Обеспечение электроэнергией объектов, подведение к которым линии электропередач невозможно или невыгодно экономически. Это может быть дача или охотничий домик, находящийся далеко от ЛЭП. Такие устройства используются также для питания светильников в отдаленных участках сада или автобусных остановках.
    • Питание мобильных и переносных устройств. При походах, поездках на рыбалку и других подобных мероприятиях есть необходимость зарядки телефонов, фотоаппаратов и прочих гаджетов. Для этого также используются солнечные элементы.

    1396862636_solnechnaya-batareya-dlya-dachi.jpg
    Солнечные батареи удобно применять там, куда нельзя подвести электричество

    Преимущества солнечных батарей

    Солнечная энергия — это перспективное направление, которое постоянно развивается. Они имеют несколько основных достоинств. Удобство использования, долгий срок службы, безопасность и доступность.

    Положительные стороны применение данной разновидности аккумуляторных батарей:

    • Возобновляемость – этот источник энергии практически не имеет ограничений притом бесплатный. По крайней мере на ближайшие 6.5 миллиардов лет. Нужно подобрать оборудование, установить его и использовать по назначению (в частном доме или коттеджном участке).
    • Обильность – Поверхность земли в среднем получает около 120 тысяч терравват энергии что в 20 раз превышает нынешнее энергопотребление. Солнечные батареи для коттеджей или частных домов имеют огромный потенциал для использования.
    • Постоянство – солнечная энергия постоянна поэтому человечеству не грозит перерасход в процессе ее использования.
    • Доступность – солнечная энергия может вырабатывать на любой территории, при наличии естественного света. При этом чаще всего она применяется для отопления жилища.
    • Экологическая чистота – солнечная энергетика является перспективной отраслью, которая в будущем заменит электростанции, работающие на невозобновляемых ресурсах: газ, торф, уголь и нефть. Безопасны для здоровья людей и домашних животных.

    Важно: Отдельно хочется подчеркнуть термоядерную энергию. Несмотря на то, что «мирный атом» позиционируется, как безопасный, при авариях на АЭС этот фактор полностью перечеркивается (Три-Лонг-Айленд, Чернобыль, Фукусима).

    • При производстве панелей и монтаже солнечных электростанций в атмосферу не происходят значительные выбросы вредных или токсичных веществ.
    • Бесшумность – выработка электроэнергии производится практически бесшумно, и поэтому этот вид электростанций лучше ветровых электростанций. Их работа сопровождается постоянным гулом из-за чего оборудование быстро выходит из строя, а сотрудники должны делать частые перерывы на отдых.
    • Экономичность – при использовании солнечных батарей владельцы недвижимости ощущают значительное снижение коммунальных расходов на электроэнергию. Панели имеют долгий срок службы – производитель дает гарантию на панели от 20 до 25 лет. При этом обслуживание всей электростанции сводится к периодической (раз в 5-6 месяцев) очистке поверхностей панелей от грязи и пыли

    Недостатки солнечных батарей

    К сожалению, и этот практически неисчерпаемый источник энергии имеет определенные ограничения и недостатки:

    • Высокая стоимость оборудования – автономная солнечная электростанция даже небольшой мощности доступна далеко не каждому. Оборудование частного дома такими аккумуляторами стоит недешево, но помогает снизить расходы на оплату коммунальных услуг (электроэнергии).
    • Обустройство собственного жилища солнечными батареями потребует финансовых затрат.
    • Периодичность генерации — солнечная электростанция не способна обеспечить полноценную бесперебойную электрификацию частного дома.

     Важно: Проблему можно решить, установив аккумуляторы высокой емкости, однако из-за этого возрастет стоимость получения энергии, что сделает ее невыгодной по сравнению с традиционными энергоносителями.

    • Хранения энергии – в солнечной электростанции аккумуляторная батарея является самым дорогим элементом (даже батареи небольшого объема и панели на гелевой основе).
    • Низкий уровень загрязнения окружающей среды – солнечная энергия считается экологически чистой, однако производственный процесс батарей сопровождается выбросами трифторида азота, оксидов серы. Все это создает «парниковый эффект».
    • Использование в производстве редкоземельных элементов – тонкопленочные солнечные панели имеют в своем составе теллурид кадмия (CdTe).
    • Плотность мощности – это количество энергии, которое можно получить с 1 кв. метра энергоносителя. В среднем этот показатель составляет 150-170 Вт/м2. Это гораздо больше по сравнению с другими альтернативными источниками энергии. Однако несравнимо, ниже чем у традиционных (это касается атомной энергетики).

    Отопление солнечной энергией домов

    Принцип работы солнечной батареи для отопления дома кардинально отличает их от всех описанных выше приспособлений. Это совершенно другое устройство. Описание следует ниже.

    Главной деталью отопительной системы, работающей на энергии солнца, является коллектор, принимающий его свет и преобразовывающий его в кинетическую энергию. Площадь этого элемента может варьироваться от 30 до 70 квадратных метров.

    Для крепления коллектора используется специальная техника. Между собой пластины соединены металлическими контактами.

    Следующим компонентом системы является накопительный бойлер. В нем происходит трансформация кинетической энергии в тепловую. Он участвует в нагревании воды, литраж которой может достигать 300 литров. Иногда такие системы поддерживаются дополнительными котлами на сухом топливе.

    1077149.jpg

    Завершают систему солнечного отопления настенные и напольные элементы, в которых по тонким медным трубам, распределенным по всей их площади, циркулирует нагретая жидкость. Благодаря низкой температуре запуска панелей и равномерности теплоотдачи, помещение прогревается достаточно быстро.

    Как работает солнечное отопление

    Давайте подробно рассмотрим принцип работы солнечных батарей от ультрафиолетового света.

    Между температурой коллектора и накопительного элемента появляется разница. Носитель тепла, что чаще всего является водой, в которую добавлен антифриз, начинает циркулировать о системе. Совершаемая жидкостью работа является именно кинетической энергией.

    1077245.jpg

    По мере прохождения жидкости через слои системы кинетическая энергия преобразовывается в тепло, которое и используется для отопления дома. Этот процесс циркуляции носителя обеспечивает помещение теплом и позволяет сохранять его в любое время суток и года.

    Итак, мы выяснили принцип работы солнечных батарей.

    remont-system.ru

    Солнечные батареи принцип работы, подключение для частного дома

    Одним из преимуществ загородного коттеджа и дачного домика является возможность их последующей модификации, включая полную или частичную модернизацию централизованной сети электроснабжения. Для этого широко используются автономные системы, работающие на альтернативных источниках энергии. И больше всего привлекает людей солнечная энергия. Технология, которая изначально разрабатывалась для нужд космической промышленности, доступна сегодня и в гражданском строительстве.

    Солнечные батареи для частного дома

    Эксперты в области мировой энергетики сходятся во мнении, что применение в быту стационарных электростанций, функционирующих на солнечных батареях, — самый «безболезненный» для экологии способ добычи природных ресурсов. Единственной проблемой, с которой сталкиваются владельцы частных домов, является выбор оптимальной конструкции и модели гелиосистемы с учетом экономической выгоды и прироста показателей КПД.

    В этой статье мы затронем принцип действия солнечных панелей, рассмотрим популярные способы монтажа гелиоустановок и расскажем о важных аспектах эксплуатации оборудования, которые помогут определиться с выбором конфигурации электростанции для бытового использования.

    Принцип работы «домашней» гелиосистемы

    Рабочими элементами солнечной батареи для частного дома выступают фотоэлектрические пластины. Они поглощают инфракрасное излучение от солнца и генерируют бесплатные природные экоресурсы в постоянный электрический ток.

    Принцип работы гелиосистемы

    Чтобы фотопанели работали исправно и обеспечивали необходимую мощность, их соединяют между собой, чередуя параллельный и последовательный методы подключения. Постоянный электрический ток, в зависимости от конструкции, поступает на инвертор, где преобразуется в переменный ток 220 V, или временно «оседает» в аккумулирующих емкостях.

    Второй вариант более практичный, так как накопление электроэнергии «на запас» позволяет:

    • исключить резкие перепады напряжения в домашней сети;
    • рационально использовать полученные ресурсы;
    • автоматически или вручную регулировать интенсивность работы электростанции.

    При правильном монтаже КПД современных гелиосистем держится на уровне 35–40%. Модульные солнечные батареи для дома демонстрируют максимальные показатели эффективности в южных регионах России, где хорошая погода стоит больше 200 дней в году.

    Принцип работы гелиосистемы

    При установке солнечных батарей для частного дома крайне важно учитывать не только район, но и географическую широту, поскольку ближе к полюсам излучение солнца менее интенсивно. Но даже в северных и восточных регионах использование альтернативной энергии позволит вам сэкономить на потреблении традиционно «домашних» ресурсов.

    Варианты фотоэлектрических элементов

    Как было сказано ранее, генерация электрического тока происходит в момент соприкосновения лучей солнца с поверхностью фотоэлементов. Воздействие инфракрасного излучения смещает электроны с их «родных» орбит, в результате чего создается направленное движение заряженных ионов. При грамотном монтаже одна солнечная панель площадью 10 кв. м способна вырабатывать порядка 1 кВт энергии. На мощность бытовых гелиосистем оказывают влияние характеристики фотоэлемента.

    1) Монокристаллический кремний

    Такие солнечные батареи для дома отличаются достаточно легким весом, компактными размерами, а также продолжительным сроком эксплуатации. Их очень удобно монтировать, вот только монокристаллические фотоэлементы требовательны к интенсивности солнечного излучения и направленности лучей. Даже небольшая облачность критична для солнечной батареи, поскольку практически всегда приводит к прекращению генерации электричества от солнца.

    Монокристаллический кремний

    Толщина панелей колеблется в пределах 200–300 мкм, а КПД при хорошей погоде и правильном расположении конструкции держится на уровне 17–19%. Недостаток — высокая стоимость для частных домов.

    2) Поликристаллический кремний

    В среднем срок эксплуатации составляет 15-20 лет, КПД – 14%. По электрическим характеристикам поликристаллические фотоэлементы уступают монокристаллу.

    Поликристаллический кремний

    Но благодаря тому, что кристаллы кремния направлены в разные стороны, пластины на солнечных батареях хорошо улавливают рассеянные световые пучки, а потому намного меньше «страдают» при отсутствии солнца.

    3) Тонкопленочные панели

    В данном случае используется светопоглощающая пленка, которая «впитывает» энергию солнца даже при пасмурной погоде. Вот только КПД у них держится на уровне 8–10%, но этот недостаток с лихвой компенсируется низкой стоимостью.

    Тонкопленочные панели

    Тонкопленочные фотоэлементы можно установить в любом удобном месте кровли или стены здания. Они не притягивают пыль и даже работают при неблагоприятных условиях окружающей среды, но при малой интенсивности солнечного излучения КПД снижается на 15%. Недостаток — требуется большая площадь для монтажа.

    Различают также фотоэлементы из аморфного кремния, которые представляют собой эконом-вариант для дачных домиков (КПД 7–8%), и панели из теллуида кадмия, изготовленные по пленочной технологии, — КПД в районе 9–11%.

    Схемы подключения солнечных батарей

    Выделяют несколько основных категорий фотоэлектрических систем энергоснабжения частного дома (ФСЭ), которые различаются между собой по техническим параметрам и функциональным характеристикам.

    Схемы подключения солнечных батарей

    К первой группе относят полностью автономные (закрытые) системы, которые не интегрированы в централизованную сеть электроснабжения. Солнечные генераторы функционируют в собственном контуре, а бытовые приборы подключены напрямую. Показатели КПД возрастают после установки аккумуляторных батарей и контроллера заряда.

    Вторую группу представляет система солнечных батарей открытого типа. По умолчанию аккумулирующие емкости в ней не предусмотрены. ФСЭ подключены к централизованной сети электроснабжения через инвертор. При допустимом значении потребляемой мощности работают только фотопанели, которые генерируют ток напрямую. Если нагрузка возрастает, потребление электричества производится из традиционных источников. Такие гелиосистемы стоят недорого, но и не отличаются высокой эффективностью.

    К третьей категории относят комбинированные ФСЭ, которые обладают характеристиками гелиосистем открытого и закрытого типа. Такие конструкции отличаются высокой стоимостью, поскольку их работа связана с использованием аккумуляторных батарей повышенной емкости и сетевых многофункциональных преобразователей.

    Обогрев дома при помощи солнечных панелей

    Для автономного отопления частного дома стандартные гелиосистемы применяют в основном на юге России, где тепловая энергия является первоосновным источником электричества. Владельцам дачных домов и небольших коттеджей целесообразнее приобретать для нагрева воды бытовой коллектор.

    Выбор конкретной схемы подключения напрямую зависит от условий эксплуатации оборудования и личных потребностей. Как показывает практика, использование солнечных батарей в зимний период дает возможность сэкономить на традиционных энергоносителях до 25% всех затрат, в зависимости от температуры окружающей среды.

    Стандартный комплект оборудования

    Чтобы обеспечить частный дом электроэнергией по «зеленым» тарифам, одних только солнечных панелей недостаточно. Базовая комплектация, помимо фотоэлементов, в обязательном порядке подразумевает применение вспомогательного оборудования:

    • аккумулирующие емкости;
    • сетевой инвертор;
    • контроллер заряда АКБ.

    Если вы решили самостоятельно сделать электростанцию, работающую от солнечных батарей, не выбирайте для накопления электроэнергии автомобильные аккумуляторы — их срок службы при интенсивной нагрузке составляет всего 2-3 года, поэтому такие «батарейки» придется регулярно менять.

    комплект оборудования гелиосистемы

    Гелиосистемы на основе вакуумного коллектора или солнечного модуля для нагрева воды дополнительно комплектуются насосом для постоянной циркуляции теплоносителя, водяным котлом емкостью до 1000 л и электрическими тэнами.

    Таким образом, солнечные энергоресурсы можно использовать для электроснабжения, горячего водоснабжения или отопления, включая систему «теплый пол». Чтобы подобрать наиболее подходящий вариант для автономного дома, надо предварительно рассчитать суммарную мощность потребления бытовых приборов, а также обязательно учесть уровень инсоляции, месторасположение и угол наклона фотопанелей, среднее количество солнечных дней в году.

    Способы монтажа бытовых гелиоустановок

    В установке солнечных батарей нет ничего сложного. Самое главное — грамотно разместить модули. При монтаже важно придерживаться определенного угла наклона, который должен соответствовать географической широте местности. В процессе установки нужно также соблюдать азимут. Для северо-восточных он составляет 180 градусов.

    монтаж гелиоустановок

    Зимой КПД электростанции с солнечными батареями может упасть до минимальных значений, поскольку обильные снегопады будут препятствовать попаданию лучей солнца на наружную поверхность фотоэлектрических элементов. Поэтому при монтаже важно учесть, что на крыше потребуется свободное место для очистки конструкции от налипшего снега и грязи. Впрочем, этих хлопот можно избежать, если зафиксировать солнечные панели на поверхности южной стены под углом 60–80 градусов. На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:

    1. кровля — дополнительно потребуется установка надежной опорной конструкции из металлопрофилей или направляющих рельс;
    2. стены — в данном случае на фасад здания монтируется рамная система для удержания фотопанелей «на весу»;
    3. приусадебная территория — альтернативный вариант расположения батарей, когда кровля дома сильно затенена или не рассчитана на дополнительную нагрузку.

    Свободное размещение имеет множество преимуществ, но требует наличия достаточного пространства на приусадебном участке. Чтобы автоматизировать процесс наклона и движения фотоэлектрических панелей по ходу солнца, дополнительно рекомендуется использовать специальные шарнирные конструкции с электроприводом.

    Окупаемость и срок эксплуатации

    Применение солнечных батарей позволит сэкономить на освещении и отоплении, независимо от времени года. Самые большие показатели энгергоэффективности гелиосистемы демонстрируют в южных широтах, где количество солнечных дней преобладает. Это и неудивительно, так как обязательным условием высокопродуктивной работы электростанции является стабильное поступление инфракрасного излучения и видимого света на поверхность фотоэлектрических элементов.

    По статистике, солнечные батареи для частного дома мощностью 4–5 кВт при постоянном использовании окупают себя за 8–10 лет, после чего работают впрок. При этом срок эксплуатации составляет в среднем 20-25 лет, а вот аккумуляторные батареи придется менять через каждые 5-6 лет. Многим такие сроки окупаемости покажутся большими, но в действительности оно того стоит, учитывая, что в скором времени ископаемых ресурсов на планете практически не останется, а стоимость одного киловатта электроэнергии возрастет в разы.

    earthgenerator.ru

    Выгоден ли частный дом на солнечных батареях



    Одним из преимуществ собственного дома является возможность его модификации. В том числе и источниками альтернативной энергии. Солнечные батареи для частного дома – наилучший на данный момент способ обеспечить себя экологичным электричеством.

    С чего начать

    Подсчет затрат электроэнергии. Для установления необходимой мощности системы солнечных панелей, нужно подсчитать, сколько электричества вы расходуете. Очень многое в этом вопросе зависит от того, используется ли частный дом постоянно или только как дача в определенные сезоны года. Для подсчета возьмите квитанции по оплате за электроэнергию за год и установите общее количество киловатт, затраченных за этот период, затем разделите на 12 (количество месяцев) – вы получите среднемесячный расход электроэнергии.

    Расчет среднемесячного расхода потребляемого электричества

    Как показывает опыт и отзывы реальных потребителей, в средней полосе России полученный результат необходимо умножить на коэффициент 16, чтобы получить необходимую мощность батарей в Ваттах.

    Рассмотрим пример. За год вы потратили 1625 кВт, делим эту цифру на 12 месяцев и умножаем на коэффициент 16 – получается, 2166 Ватт. Т.е. система солнечных батарей будет обеспечивать такой дом, если ее мощность будет не менее 2200 Ватт/час

    Где крепить?



    Крыша. Закрепление солнечных батарей на крыше – очевидное, но не всегда лучшее решение для частного дома. Направленный на юг скат крыши действительно обеспечивает наилучший результат из стационарных способов крепления солнечных батарей, но на этом варианты не ограничиваются.

    При таком закреплении скат крыши должен быть на ЮГ

    Стены. Если стена «смотрит» на юг – она отлично подходит для размещения на ней солнечных батарей. Понаблюдайте, не падает ли на стену тень от деревьев, хозяйственных построек, забора, иных объектов. Не размещайте солнечные панели в этих местах.

    Желательно также использовать южную стену

    Не стоит ставить панели на восточной или западной стенах. Таким образом, в самый интенсивный период светового дня вы будете получать на свои панели только косые лучи, что значительно снижает эффективность системы

    Свободное размещение. Самый эффективный вариант размещения солнечных батарей, но требует свободной площади во дворе. При свободном размещении солнечных батарей в частном доме их можно закреплять на шарнирах и таким образом, направляя их поверхность к солнцу под 90°.

    Такое расположение батарей позволяет получить от них максимум мощности

    Что входит в систему

    Солнечные панели. О том, как их собрать, мы писали в этой статье (откроется в новом окне). Вы можете купить готовый комплект солнечных батарей для дома, но для экономии средств можно приобрести поликристаллические фотоэлементы и собрать солнечные батареи для своего дома своими руками.

    Инвертор. Солнечные батареи вырабатывают постоянный ток, близкий к 12 или 24 вольтам (в зависимости от подключения), инвертор преобразует его в переменный 220 В и 50 Гц, от которого можно питать все бытовые приборы.

    Аккумулятор. Даже их система. Солнечная энергия вырабатывается не постоянно. В пиковые часы её может быть переизбыток, а с наступлением сумерек её выработка прекращается вовсе. Аккумуляторы накапливают электричество в течении светового дня и отдают его вечером/ночью. Как выбирать аккумулятор для солнечной электростанции написано в этой статье (откроется в новом окне).

    Важно знать. Не рекомендуется использовать для этих целей обычные автомобильные аккумуляторы – они приходят в негодность за 2-3 года эксплуатации (на такой срок службы они и рассчитаны)

    Контроллер. Обеспечивает полный заряд аккумуляторной батареи и защищает её от перезарядки и закипания. О том, какой контроллер выбрать мы писали в этой статье (откроется в новом окне).

    Выгодны ли солнечные батареи для частного дома

    В западных странах мода на солнечную энергетику продиктована больше заботой об экологии, чем поиском экономической выгоды. У нас реалии несколько иные.

    При сохранении нынешних цен на поставляемое электричество, система из солнечных батарей, собранная своими руками для одного частного дома и семьи из 4 х человек, полностью окупается за 4-5 лет. При этом срок службы фотоэлементов – составляет 20-25 лет, а вот аккумуляторы придется менять через 5-7 лет в зависимости от качества батарей.

    Пока нигде в мире (и Россия не исключение) не наблюдается снижения цен на поставляемое электричество, поэтому за срок службы фотоэлементов в солнечной панели, система успеет окупиться как минимум 4-5 раз.

    Видео. Как рассчитать необходимое количество солнечных батарей для дома

    В ролике наглядно показан порядок расчета площади солнечных батарей для частного дома. Полезно для тех, кто хочет учесть все расходы на сооружение системы автономного солнечного электроснабжения уже на этапе планирования.



    Ветряк для частного дома — игрушка или реальная альтернатива Бестопливный генератор — способ заработать на безграмотности Виды контроллеров для солнечных батарей и как выбирать Power Bank с солнечной батареей — расчет на безграмотность

    electricadom.com

    Что нужно знать о солнечных батареях для частного дома?

    Среди нас существует множество источников бесплатной энергии, самая доступная и выгодная – солнечная. Для её добычи используются специальные элементы – солнечные панели. О том, что понадобится для устройства солнечной электростанции в частном доме, о нюансах использования солнечной энергии мы сегодня и поговорим.

    Составные части солнечной электростанции

    Условно можно выделить две группы систем солнечных батарей – с малыми и большими панелями. В первом случае речь идет о аккумуляторах, способных «выдавать» до 24 В. Для полноценного обеспечения дома электроэнергией потребуются панели второго типа. Рассмотрим устройство подобных систем.

    Солнечные элементы

    Важнейшей частью солнечной электростанции являются сами элементы. Они выполнены из специального материала, который способен преобразовывать солнечную энергию в электрическую.

    Панель состоит из нескольких отдельных элементов, которые соединяются в сборки последовательно и параллельно. При параллельном соединении увеличивается выходное напряжение, при последовательном – выходной ток.

    У каждой солнечной панели есть несколько основных характеристик, которые стоит учитывать при выборе.

    Характеристика Подробное описание

    Мощность (Вт)

    Подбирается с учетом уровня оснащения электрическими приборами. Так, семья из трех человек, потребляет около 5 кВт/ч ежедневно. Значит, суммарная мощность фотоэлементов не должна быть меньше 1500 Вт. Есть еще ряд нюансов, которые надо учитывать.

    Напряжение (В)

    Для частного дома предпочтительней системы, которые выдают 24 В

    Тип корпуса

    Металлический или пластиковый. Первый тяжелее, но долговечнее.

    Механизм подключения

    Коннекторы или выводы. Первый вариант практичнее и надежнее, но стоит дороже.

    Не забывайте, что вам придется регулярно чистить элементы от грязи и пыли. Делать это гораздо удобнее, если панели находятся в надежной металлической рамке.

    Солнечные панели можно купить уже готовыми, но гораздо выгодней и удобнее собрать их самому. Так вы сможете неплохо сэкономить. Сами элементы можно заказать в интернете. Соединяя их параллельно и последовательно, вы сможете добиться необходимой мощности и напряжения. Для каркаса можно использовать алюминиевые уголки и лист стекла или прозрачного пластика.

    Помните, что пластик со временем может помутнеть, что уменьшит количество энергии, получаемой с панелей. Стекло в этом плане более долговечно, но оно менее прочное.

    Контроллер

    Контроллер распределяет заряд между потребителем и аккумулятором. Если мощность, выдаваемая солнечными батареями, больше потребляемой, то остаток идет на зарядку аккумуляторов. Если же мощность нагрузки больше, чем выделяют элементы, то в работу подключаются аккумуляторные батареи.

    Контроллер так же обеспечивает правильный заряд аккумуляторов. Выбирать его стоит исходя из мощности солнечных батарей, емкости аккумуляторов и величины нагрузки. Современные контроллеры могут сообщать вам всю информацию о вашей станции через интернет.

    Батареи

    Аккумуляторы накапливают излишнюю мощность с солнечных батарей, что позволяет пользоваться электричеством и в ночное время суток. Кроме того, если размер потребляемой электроэнергии превышает максимально возможное производство в панелях – подключается аккумулятор.

    Самый важный параметр АКБ – емкость. Минимальная необходимая емкость аккумулятора – это то количество электроэнергии, которое вы потребляете за ночь. Если в темное время суток вы потребляете 2 кВт/ч, то и аккумулятор должен отдавать не менее 2 кВт/ч.

    Емкость рассчитывается следующим образом:

    Необходимая емкость=потребление (Вт/ч)/напряжение АКБ (в вольтах).

    Если вы потребляете 2 кВт/ч, а напряжение аккумулятора равно 12 В, то необходимая емкость равна 166 А/ч (2000/12).

    Но КПД батареи не 100 %, а 70 или даже 50 %. В облачность выработка электроэнергии сильно снижается, поэтому надо рассчитывать АКБ, исходя из потребления за двое суток. Тогда, в случае пасмурной погоды, вы сможете комфортно дождаться солнечных дней.

    Инвертор

    Инвертор преобразует 12 В с аккумуляторной батареи в 220 В для работы приборов. Главный его параметр – мощность. Рассчитывается она из потребления электроэнергии всеми приборами в один момент времени.

    Это значение надо подбирать с запасом, так как КПД данного прибора далеко не 100 %. При подключении нагрузки с суммарной мощностью большей, чем способен отдать инвертор, он просто сгорит или уйдет в защиту.

    Есть один нюанс при выборе инвертора. Приборы с электродвигателем (холодильник, дрель, пылесос и т.д.) требуют для работы чистую синусоиду. Поэтому при выборе инвертора следует обращать внимание не только на мощность, но и на тип выходного напряжения.

    Проводка

    Провода соединяют все элементы воедино. Выбирать их стоит исходя из мощности, которая по ним протекает. Запас в этом случае необходим, так как на проводах может теряться часть выдаваемой энергии.

    Если провода работают на пределе своих возможностей, то они могут греться, что приведет к пожару.

    Солнечные батареи обычно устанавливаются на крышу дома, но если крыша расположена неудачно, то их можно установить и на земле, используя специальные крепления. В этом случае оборудование будет удобно очищать от грязи и пыли.

    Направление установки также играет большую роль. Необходимо выяснить, в какой стороне продолжительность освещения солнечных панелей будет максимальна для вашего региона.

    Интересные факты

    Батареи на солнечной энергии имеют ряд особенностей, о которых многие люди не подозревают. Мы подобрали интересные факты, которые могут поменять ваше представление об этом источнике электроэнергии.

    1. Монокристаллические панели перестают аккумулировать солнечную энергию даже при частичном затемнении. Поликристаллические элементы в таких же условиях лишь снижают выдаваемую мощность.

    2. На качество работы влияет инсоляция — чем она ниже, тем больше вам потребуется пластин.

    3. Количество пластин не зависит от общей площади крыши.

    4. Установка солнечных батарей в целях экономии – долгосрочные инвестиции. Цена качественной системы может достигать десятков тысяч долларов, окупаемость настанет через несколько десятилетий.

    5. Панели служат не более 50 лет, аккумуляторы – до 10 лет. Проблема утилизации фотоэлементов в России не решена.

    Можно сэкономить на оборудовании, если воспользоваться онлайн — площадками по покупке/продаже модулей.

     

     

     

    Распродажа (-53%):

    bydom.ru

    Солнечные батареи для дома: виды, устройство, технические характеристики

    При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

    Устройство системы электропитания от солнечных батарей

    Содержание статьи

    Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

    Электрические солнечные батареи для дома открывают много возможностей

    Электрические солнечные батареи для дома открывают много возможностей

    Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

    • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
    • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
    • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.
    Солнечные батареи для дома - только часть системы

    Солнечные батареи для дома — только часть системы

    Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт  а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

    Виды солнечных батарей

    С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

    Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью.  Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на  корпусе.

    Солнечная панель для дома состоит из некоторого количества фтоэлементов

    Солнечная панель для дома состоит из некоторого количества фтоэлементов

    Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

    Виды фотоэлементов для солнечных батарей

    Солнечные батареи для дома делают на основе кремневых элементов трех типов;

    • Монокристаллические. Каждый фотоэлемент — один кристалл кремния. Монокристаллические фотоэлементы имеют неплохой КПД (порядка 24,7%), но и стоимость их несколько выше. Отличить можно, во-первых, по однородному насыщенному синему цвету, во-вторых, по скругленным краям фотоэлемента. Виды кремниевых фотоэлементов для солнечных батарей

      Виды кремниевых фотоэлементов для солнечных батарей

    • Поликристаллические. Несколько небольших кремниевых кристаллов объединены в один фотоэлемент. Они имеют неоднородную структуру, из-за чего хуже поглощают солнечный свет. Это отражается на КПД (20,3%). Фактически это означает, что солнечная панель той же мощности будет занимать примерно на 20% больше площади.
    • Тонкопленочные. Представляют собой слой полупроводника, напыленный на гибкую подложку. За счет своей гибкости могут монтироваться на криволинейные поверхности. Но имеют невысокую производительность (порядка 10,4%), так что занимают большие площади (как минимум, в 2 раза больше, чем поликристаллические).

    Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

    Как правильно выбрать систему солнечных батарей для дома

    Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

    Солнечные электростанции для дома могут быть не такими дорогими, если подходить к вопросу взвешенно

    Солнечные электростанции для дома могут быть не такими дорогими, если подходить к вопросу взвешенно

    Что надо купить

    Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:

    • Приобретайте солнечные батареи для дома с выходным напряжением 12 В. Именно от такого напряжения работает большая часть бытовой и строительной техники, светодиодные светильники и т.д. Техники, работающей от 24 или 48 вольт намного меньше. Можете посмотреть паспорта или воспользуйтесь поиском.
    • Не используйте для освещения лампы накаливания. Они потребляют слишком много электроэнергии, да и работают от 220 в. Замените их на светодиодные. Для них постоянный ток в 12 В — это то, что надо. "Полная" система электропитания от солнечных батарей выглядит так

      «Полная» система электропитания от солнечных батарей выглядит так

    • Не старайтесь сразу купить систему большой мощности чтобы покрыть все возможные потребности. Для начала купите пару модулей без преобразователя/инвертора, подключите к ним ту технику, которая работает от постоянного напряжения. Если вас устроит система, позднее можно нарастить мощность, докупить инвертор и подключить технику, которая работает от 220-230 В. И учтите, что инвертор, даже при выключенной нагрузке, потребляет электроэнергию (потери на преобразовании примерно 30%). То есть ночью, когда все выключено, он просто расходует заряд АКБ. Причем выдает он далеко не идеальную синусоиду. В общем, все что может работать от постоянного напряжения, запитываем от аккумуляторов напрямую.

    Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

    Без чего можно обойтись

    Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.

    • Не покупайте гелиевые или аккумуляторы глубокого разряда. Они не стоят своих денег. С солнечными батареями для дома отлично работают даже отслужившие свой срок автомобильные АКБ . Они нормально работают еще минимум, 5 лет. Если площадь не ограничена, можно купить солнечную батарею на поликристаллических фотоэлементах

      Если площадь не ограничена, можно купить солнечную батарею на поликристаллических фотоэлементах

    • В принципе, можно обойтись еще меньшими средствами. Можно не ставить контроллер. Он стоит не менее 150$ (а при большой мощности 500$), а вся его задача — мониторить состояние заряда батарей. Если бюджет ограничен, купите автомобильные часы, работающие от 12 В, которые также измеряют напряжение, температуру. Они стоят 2-5$ и практически выполняют ту же функцию. А чтобы избежать перезаряда, купите лишний аккумулятор. Или два. Суммарная мощность «лишней» емкости должна быть не ниже 20%. Это и позволит избежать перезаряда, и увеличит емкость системы.

    Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

    Определяемся с размерами и количеством фотоэлементов

    В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

    Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

    Солнечная панель на 4 В имеет 7 элемента

    Солнечная панель на 4 В имеет 7 элемента

    Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

    Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

    Технические характеристики: на что обратить внимание

    В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

    Пример технических характеристик солнечных батарей для дома

    Пример технических характеристик солнечных батарей для дома

    Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и  т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

    Корпус и стекло

    Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

    Бликов на корпусе быть не должно

    Бликов на корпусе быть не должно

    Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

    Выбор сечения кабеля и тонкости электрического подключения

    Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

    • расстояние менее 10 метров:
      • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
      • на две батареи — 2,5 мм2;
      • три батареи — 4,0 мм2;
    • расстояние больше 10 метров:
      • для подключения одной панели берем 2,5 мм2;
      • двух — 4,0 мм2;
      • трех — 6,0 мм2.

    Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно тут).

    Солнечные батареи для дома: электрическое подключение

    Солнечные батареи для дома: электрическое подключение

    При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

    Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

    Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

    stroychik.ru

    Related Articles

    Как выложить дымоход для котла из кирпича видео – Кладка дымохода из кирпича для котла, бани, печи своими руками: рекомендации печников (видео)

    Содержание Дымоходы для твердотопливных котлов из кирпичаКак обустроить из кирпича дымоход для твердотопливного котлаОбщие сведения о частях системы дымоотведенияПравила установкиКак производится кладка дымохода из кирпичаЧто нужно приготовить для работыОсобенности кладкиКак сделать дымоход из кирпича для котла?Требования при возведении дымоходовКакие размеры должен иметь дымоход?Правила, которые нужно знать при возведении дымоходаКладка дымоходной конструкции из кирпичаКак сделать кирпичный […]
    Читать далее

    Подкладочный материал 5 букв: Подкладочная ткань, 5 (пять) букв

    Содержание Из неё шьют одежду, 5 букв, первая буква Т — кроссворды и сканвордыТест. Дублирование деталей (7 класс ) ФГОСДжинсовая ткань – описание материала, характеристики, составКак все начиналосьПоговорим о цветеИстория названияОсобенности производстваВ двух словах о видах плетенияСоставРазновидностиТрадиционная классификацияКлассификация по особенностям составаКлассификация по внешнему видуОсновные характеристикиГлавный показатель – плотностьДостоинства универсальной тканиНедостаткиСфера примененияПравила уходаСтиркаСушкаГлажкаУрок 16. свойства текстильных […]
    Читать далее

    Навесов из поликарбоната чертежи – Навесы из поликарбоната к частному дому своими руками: фото современных навесных конструкций

    Содержание Как сделать навесы из поликарбоната своими руками по чертежуКак построить функциональный навес из поликарбоната своими рукамиКакой поликарбонат используют для строительства?как составить схему конструкции как составить схему сооружения из поликарбонатаПравильный чертеж – залог долговечности сооруженияПочему важно грамотно составить схемуВиды и размеры поликарбонатаПроектирование конструкцииКаким образом обеспечить себя чертежамиВыводНавес из поликарбоната своими руками >> ПримерыПреимуществаСоветыРекомендацииЧертежиВсе изделиярасчет для […]
    Читать далее

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Search for: