Утеплительный материал – что это такое, внутренняя тепло-отделка жилых помещений, термостойкая пленка или листовые материалы для изоляции стыков и откосов, что лучше использовать

Содержание

Теплоизоляционные материалы: виды,описание,фото,свойства | Строительные материалы

 

Чтобы защитить жилье от теплопотерь и повышенной влажности, его покрывают различными типами утеплителей. Выбрать лучший из них очень сложно, ведь у каждого изделия собственные уникальные свойства и область применения. Теплоизоляционные материалы, которые применяются в современном строительстве, с одной стороны экологичны, с другой – удобны в монтаже. Изучив основные виды утеплителей, можно выбрать лучший теплоизоляционный материал, отвечающий именно вашим потребностям.

Основные виды утеплителей

Современные теплоизоляционные материалы для применения в строительстве и ремонте делятся на множество разновидностей: промышленные и бытовые, природные и искусственные, гибкие и жесткие теплоизоляционные материалы и т.д.

К примеру, по форме современная теплоизоляция разделяется на такие образцы, как:

  • рулоны;
  • листовой;
  • единичный;
  • сыпучий.

По структуре отличают следующие типы термоизоляции со своей уникальной особенностью:

  • волокнистые;
  • ячеистые;
  • зернистые.

По виду сырья выделяют такие изделия различного класса качества:

  1. Органические, природные или натуральные утеплители — это пробковая кора, целлюлозная вата, пенополистирол, древесное волокно, пенопласт, бумажные гранулы, торф. Эти виды строительных теплоизоляционных материалов применяются исключительно внутри помещения, чтобы минимизировать высокую влажность. Однако природные строительные термоизоляторы не огнеупорны.
  2. Неорганические теплоизоляционные материалы
     — 
    горные породы, стекловолокно, пеностекло, минераловатные утеплители, вспененный каучук, ячеистые бетоны, каменная вата, базальтовое волокно. Хороший изолятор тепла из данной категории отличается высокой степенью паропроницаемости и огнестойкости. Особенно эффективно утепление изделием с гидрофобизирующими добавками.
  3. Смешанные — перлит, асбест, вермикулит и другие утеплители из вспененных горных пород. Отличаются наилучшим качеством и, разумеется, повышенной стоимостью. Это самые дорогие марки лучших теплоизоляционных материалов. Поэтому таким утеплителем покрывают помещения намного реже, чем более экономными материалами.

Если нужно сделать термическую изоляцию трубопровода в стене, то для этого применяются  специальные «рукава» повышенной плотности.

Определение лучшего изделия зависит не только от цены. Их выбирают по качественным характеристикам, эргономичным свойствам и экологичности.

Какие задачи решает теплоизоляционный материал

Теплоизоляция является одним из приоритетных направлений при строительстве, поскольку ее применение позволяет многократно повысить эксплуатационные характеристики зданий. Постройка с достаточным количеством утеплителя гораздо меньше промерзает зимой, что снижает затраты на его отопление. Также она менее склонна к перегреву летом, сохраняя внутри комфортную температуру, что экономит ресурс кондиционерного оборудования.

Наличие теплоизоляции дает возможность избежать резких скачков температуры в помещении. Это очень важно, если внутри помещений применяется чувствительный к этому параметру отделочный материал, к примеру, древесина или отдельные виды пластика, в том числе и ПВХ используемый для производства натяжных потолков. Отсутствие существенных колебаний температуры дает возможность убрать благоприятные условия для образования конденсата. Именно применение теплоизоляции исключает появление сырости и развития плесени. Конечно при условии, что влага не образовывается внутри помещения слишком интенсивно от других факторов или накапливается в результате отсутствия гидроизоляции между фундаментом и фасадными стенами.

обзор теплоизоляционных материалов для наружных и внутренних работ, требования и характеристики

Правильно подобранный и установленный утеплитель позволяет улучшить микроклимат в помещении, т.к. он способствует сохранению тепла зимой и прохлады в летний период. Формирование дополнительной теплоизоляции экономически выгодно, т.к. помогает снизить расходы на отопление и охлаждение помещения.

Теплоизоляционные материалы, представленные на рынке, различаются не только характеристиками, но и сферами применения. Одни могут использоваться только для формирования утеплительного пирога внутри помещения, в то время как другие подходят для наружных работ.

Что это такое?

Все строительные материалы отличаются разной степенью теплопроводности. Одни, несмотря на большую толщину, легко пропускают тепло, в то время как другие даже при небольшой толщине сдерживают теплопотерю. Теплоизолятор – это материал, отличающийся низкой теплопроводностью. Его использование для изготовления утеплительных конструкций способствует снижению теплоотдачи строения. Рассматривая вопрос, что такое теплоизоляция, следует учесть, что это материал, который при правильном монтаже выполняет функцию термоса для дома.

Сейчас в продаже имеются разные виды утеплителей. По форме они бывают листовыми, рулонными, сыпучими, напыляемыми и т.д. Благодаря наличию большого количества разновидностей можно подобрать оптимальный вариант для утепления стен, крыши, пола и т.д.

Утеплители

Параметры, которым должен соответствовать материал-утеплитель

Утеплители для дома должны отличаться рядом характеристик, которые нужно учитывать, чтобы выбрать лучший теплоизоляционный материал. К ним относится:

  • низкая теплопроводность;
  • гигроскопичность;
  • пароизоляция;
  • огнестойкость;
  • высокая способность задерживать шумовые загрязнители;
  • биостойкость;
  • экологичность;
  • долговечность;
  • устойчивость к деформации;
  • простота монтажа.

Главным параметром выбора подобного материала является показатель теплоэффективности. Чем он ниже, тем больше тепловой энергии будет сохраняться в помещении. Кроме того, важно соотношение тепловодности с толщиной слоя. Самый тонкий и при этом имеющий высокий коэффициент теплопроводности – пенополиуретан.

Второй важнейший параметр, на который следует обратить внимание, – это гигроскопичность, т.е. способность впитывать влагу. Материалы, которые отличаются высокой гигроскопичностью, больше подходят для внутренней теплоизоляции. При формировании утеплительного пирога вне дома с использование таких материалов может потребоваться дополнительная гидроизоляция, т. к. пропитывание их водой приводит к потере теплоизоляционных свойств. Однако, если вероятность контакта с водой велика, лучше выбирать материалы, отличающиеся низкой гигроскопичностью.

Еще один важный параметр, на который следует обратить внимание, – это паропроницаемость. Некоторые материалы для утепления совсем не пропускают водяные пары. Это не всегда хорошо, т.к. способствует нарушению микроклимата внутри помещения. Паропроницаемые утеплители способны пропускать влажный воздух к стенам и обратно, при этом они не должны напитываться влагой. Это способствует сохранению тепла и поддержанию нормальной влажности в помещении. При этом нет риска появления грибка под покрытием.

Важно, чтобы строительная теплоизоляция была способна выдерживать воздействие высоких температур. Нередко такие материалы горят с выделением большого количества тепла. Температура горения базальтовой ваты составляет 1000°C. Лучше всего останавливать выбор на негорящих и самозатухающих материалах.

Не менее важным параметром является экологичность. Натуральные материалы более безопасны. Они не выделяют в воздух вредных веществ, которые могут накапливаться в организме человека, вызывая тяжелые нарушения. Некоторые из них не рекомендуется использовать для внутренних работ.

Нужно учитывать, что далеко не все современные теплоизоляционные материалы способны подавлять шумовые загрязнители. Если данный параметр является важным, лучше отдавать предпочтение пенополиуретану или минеральной вате. Большинство других разновидностей отличаются худшими звукоизоляционными характеристиками.

На долговечность материала влияет ее биостойкость. Если теплоизоляция подвержена влиянию грибка и плесени, она быстро потеряет свои свойства. Также важна устойчивость к деформации строительных утеплителей. Дома способны давать усадку, что создает дополнительную нагрузку на слой теплоизоляции. Кроме того, стойкий к механическому воздействию продукт необходим при обустройстве полов.

Большинство материалов выпускаются в удобных формах, т.е. листах, рулонах, матах и т.д. Это упрощает их монтаж. Однако есть и напыляемы виды, которые требуют использования специального оборудования. Это эффективные утеплители для стен, крыш и полов, т.к. их нанесение на поверхность не способствует формированию щелей, через которые может происходить теплопотеря, однако монтажные работы в большинстве случаев требуют дополнительных трат для найма специалистов.

Многие современные утеплители не всегда соответствуют всем требованиям, но при этом отличаются относительно небольшой стоимостью. Более дорогие строительные материалы наиболее приближены к желаемым показателям.

Утеплители

Разнообразие материалов

Перед покупкой нужно рассмотреть главные виды утеплителей и их характеристики для подбора наилучшего варианта. Это позволит оценить возможность применения материала для формирования утеплительного пирога на той или иной поверхности.

Арболит и керамзит

К натуральным утеплителям можно отнести арболит и керамзит. Арболит получается путем введения в цементный раствор мелких опилок или измельченной соломы, а также ряда добавок. Выпускается он в виде плит и насыпного материала. На последней стадии изготовления материал обрабатывается минерализатором. Его плотность составляет от 500 до 700 кг/м³. Коэффициент теплопроводности составляет 0,08-0,12 Вт/мК. Прочность составляет 0,5-3,5 МПа.

Керамзит – это сыпучий материал, который изготавливают методом вспучивания и дальнейшего обжига глины. Теплопроводность составляет 0,07-0,16 Вт/мК. Прочность материала составляет 0,6-5,5 МПа. Коэффициент водопоглощения не превышает 8-20%. При сочетании с цементной смесью данный материал дает хороший звукоизоляционный эффект.

Вата каменная, стеклянная и эковата

Для обустройства теплоизоляции чаще всего используются разновидности строительной ваты. Характеристики утеплителей данного вида могут различаться в зависимости от особенностей производства. Минеральная или каменная вата изготавливается из доломита, диабаза, известняка, базальта и других горных пород. В качестве основы применяется фенол или карбамид. Данный материал не горит, не дает усадки и не впитывает воду, но при этом отличается высоким уровнем тепло- и звукоизоляции.

Стекловата оправдывает свое название, т.е. изготавливается из отходов стекольного производства и сырья, предназначенного для изготовления стекла. Плотность составляет около 130 кг/м³. Показатели теплопроводности колеблются в пределах от 0,03-0,052 Вт/мК. Материал отличается низкой гигроскопичностью. Подходит для фасадных работ.

Основой для производства эковаты служат отходы бумажно-картонного производства. Часто применяют обрезки, получающиеся при изготовлении гофрированных ящиков, а также отбракованные журналы, газеты и книги. Сырьем может выступать и макулатура. Данный материал отличается хорошими тепло- и звукоизоляционными свойствами. Подобные материалы характеризуются способностью пропитываться влагой, поэтому лучше использовать данные виды утеплителей для стен изнутри.

Вермикулит и пеностекло

Вермикулит – это еще одна разновидность сыпучей теплоизоляции. Он изготавливается из обработанной горной породы. Отличается высокой огнестойкостью, влагостойкостью и паропроницаемостью. Этот материал для утепления стен не подходит. Его чаще используют для утепления ровных поверхностей чердаков и полов. Кроме того, он используется для изготовления теплых штукатурок.

Пеностекло изготавливается путем высокотемпературного обжига стеклянного вторсырья. Материал отличается не только влагостойкостью и пожаробезопасностью, но и высокой прочностью. Выпускается в форме удобных для монтажа блоков. Он не имеет хорошего декоративного вида, поэтому требует дополнительной штукатурки.

Утеплители

Джут

Джут – это теплоизоляционная ткань, являющаяся заменителем пакли. Применяется для сокращения теплопотери через межвенцовые щели в домах из бруса. Выпускается в форме канатов и лент. Даже при усадке стен в деревянных домах этот материал не требует замены.

ДВП и ДСП

Плиты ДВП и ДСП изготавливаются из отходов деревообрабатывающей промышленности. Мелкие опилки склеиваются особым клеем и спрессовываются. Благодаря специальной обработке материалы устойчивы к действию повышенной влажности воздуха и высоких температур. Однако ДВП и ДСП подходят только для внутренних работ, т.к. они не могут эффективно противостоять влиянию факторов внешней среды и быстро разрушаются.

Жидкая керамическая изоляция

Жидкая керамическая изоляция – это новый утеплитель, отличающийся высокой эффективностью, способностью выдерживать низкие температуры и долговечностью. Применяется для окрашивания любых поверхностей. Даже тонкий слой может снизить теплопотери. Толщина слоя должна составлять от 2 до 5 мм. Допускается и внешняя, и внутренняя теплоизоляция жидкой керамикой.

Пенофол и изоком

Пенофол и изоком – это многокомпонентные теплоизоялционные материалы. Они представляют собой тонкий слой вспененного полиэтилена, покрытого с одной или двух сторон тонким слоем алюминия. Даже тонкий слой отличается высокими теплоизоляционными и звукоизоляционными качествами. В большинстве случаев изоком и пенофол применяются для внутренней отделки.

Пенопласт, пенополистирол и пеноизол

Пенопласт, пенополистирол и пеноизол изготавливаются из одних материалов, однако данные утеплители различаются характеристиками из-за разницы в технологии производства. Наименьшей плотностью и худшими теплоизоляционными характеристиками отличается пенопласт.

Пенополистирол характеризуется более плотной ячеистой структурой. Он не боится воды и достаточно легкий, поэтому не создает дополнительной нагрузки на несущие стены. В отличие от двух других материалов пеноизол выпускается не только в форме листов и блоков, но и в виде пены. Теплопроводность составляет от 0,031 до 0,041 Вт/мК.

Утеплители

Пенополиуретан напыляемый

Пенополиуретан – это пена, которая в жидком виде наносится на утепляемую поверхность. Он отличается высокими тепло- и звукоизоляционными свойствами. Кроме того, почти не подвержен влиянию влаги. Преимуществом выступает возможность заполнения им даже больших трещин. Есть возможность создания монолитной утепленной поверхности.

Пробка. Пробковые обои

Сейчас на рынке представлены пробковые утеплительные плиты и обои. Основой для их изготовления выступает измельченная и специально обработанная кора пробкового дерева. Эти материалы отличаются высокой экологичностью и при этом способны задерживать тепло и звуковые загрязнители. Кроме того, они отличаются прочностью и долговечностью. Не подвержены влиянию патогенной микрофлоры. Пробковые блоки и обои почти не поддаются горению. Они обладают антистатическими свойствами.

Теплая штукатурка

Теплая штукатурка представляет собой классическую смесь, в состав которой входят гранулированный керамзит, опилки, вермикулит или другой наполнитель. Смесь после застывания отличается высокими теплоизоляционными свойствами. Поверхность не подвержена влиянию влаги. Материал можно использовать в сочетании с другими теплоизоляторами. Он подходит и для для внутренней, и для наружной отделки.

Фибролитные плиты

Фибролитные плиты изготавливаются из тонкой древесной стружки и связывающего цементного компонента. Плотность материала составляет от 300 до 500 кг/м³. Показатели теплопроводности колеблются в пределах от 0,8 до 0,1 Вт/мК. Фибролитные плиты отличаются высокой огнестойкостью. Они подходят для утепления помещений с повышенной влажностью.

Фольгированный утеплитель

Многие пористые материалы сейчас выпускают с фольгированным покрытием. Утеплительная вата, плиты пенополистирола и т.д. при покрытии фольгой отличаются лучшими эксплуатационными качествами. Они меньше подвержены пропитыванию водой и реже повреждаются грызунами. Фольгированные утеплители имеют более высокую стоимость.

Утеплители

Производители

На рынке сейчас представлено большое количество схожих материалов от разных производителей. Качественные варианты, отличающиеся лучшими эксплуатационными характеристиками и являющиеся безопасными для людей, выпускаются под следующими марками:

  1. Rockwool.
  2. Isover.
  3. Ursa.
  4. Knauf.
  5. Izovol.
  6. ТехноНИКОЛЬ.
  7. Белтеп.
  8. Европлекс.
  9. Пеноплекс.

Каждый производитель выпускает линейку продуктов, предназначенных для утепления поверхностей, поэтому есть возможность подобрать наилучший вариант.

Какие виды утеплителей и для чего использовать?

На рынке представлено много видов утеплительных материалов, различающихся составом, характеристиками и формой выпуска. Нужно правильно подбирать вариант утеплителя с учетом особенностей поверхности, требующей дополнительной защиты.

Утепление пола

Для утепления пола подходят почти все виды материалов. Можно использовать такие сыпучие материалы, как керамзит и вермикулит. При дополнительной гидроизоляции допускается применение минеральной и эковаты. Хороший эффект дает и утепление плитами пенополистирола. Однако при обработке пола нежелательно использовать напыляемые утеплители. Высокие вибронагрузки могут стать причиной отслаивания и растрескивания.

Утепление стен снаружи

При утеплении фасада здания лучше всего использовать материалы, отличающиеся низкой водопроницаемостью. Хороший эффект дает утепление фибролитовыми и арболитовыми блоками, плитами экструдированного пенополистирола. Между стенами можно засыпать керамзит. Если есть уверенность, что в простенках не будет скапливаться вода, можно использовать эковату.

При наружном утеплении стен можно применять минеральную вату, но в этом случае требуется обустройство гидроизоляции и защита материала слоем штукатурки. Кроме того, можно использовать навесные пенополиуретановые панели и теплую штукатурку. Хороший эффект дает жидкая керамическая теплоизоляция при использовании ее вне помещения.

Утеплители

Утепление внутренних стен

Для утепления внутренних стен наиболее часто используют плиты минеральной ваты, которые после установки зашиваются гипсокартоном. Кроме того, можно эффективно применять пробковые плиты и обои. Для внутренней отделки нередко применяется теплая штукатурка. Для отделки внутренних стен балконов лучше использовать фольгированные утеплители.

Утепление потолка

Для утепления потолка с чердака можно применять керамзит и вермикулит. При обустройстве внутреннего утеплительного пирога на потолке можно использовать минеральную вату, плиты пенополистирола, пенопласт. Кроме того, допустимо использование пробковых обоев и плит. Они просты в монтаже и при этом отличаются небольшим весом.

Утепление кровли

Для утепления скатов крыши часто используется плиты минеральной ваты, которые в дальнейшем прикрываются гипсокартоном. Однако в этом случае требуется создание дополнительной гидроизоляции, т.к. в этой части дома высока вероятность вымокания материала. Нередко используются плиты пенополистирола для обустройства теплоизоляционного пирога кровли. Хороший эффект дает использование напыляемых утеплителей. Напыляемый пенополиуретан не подвержен влиянию влаги и при этом позволяет создать монолитное теплоизоляционное покрытие между балками кровли.

Утеплители

Советы по применению

Большинство современных утеплителей выпускаются в рулонах, листах и матах. Последние 2 варианта являются наиболее удобными в монтаже, т.к. они уже ровно нарезаны, что позволяет получить более плотную стыковку. Ширина мягких утеплительных матов должна быть на 1,5 см меньше, чем расстояние между элементами обрешетки. Это позволит избежать появления зазоров, через которые холод будет проникать в помещение.

Утеплительные работы следует планировать. Желательно воспользоваться тепловизором для выявления областей, где наблюдается наибольшая теплопотеря. Вне зависимости от вида выбранного материала необходимо подготовить поверхность, устранить мелкие щели, убрать мусор и провести противогрибковую обработку.

Для обрешетки можно использовать металлические профили, имеющие антикоррозийное покрытие. Большинство приклеиваемых утеплителей требуют дополнительной фиксации специальными дюбелями. Жидкую керамику не следует наносить краскопультом. Лучше всего воспользоваться валиком или кистью. При использовании пробкового утеплителя нужно заранее подготовить поверхность, т.к. она должна быть максимально ровной, чтобы под покрытием не скапливался конденсат.

Утеплители виды и характеристики применение цена

Утеплитель: виды, характеристики, назначение и применение

При любом температурном режиме теплоизоляция не помешает. Если правильно ее осуществить, то зимой в помещениях станет заметно теплее, а летом – прохладнее. Утепление стен позволяет создать комфортный микроклимат, что касается не только жилых квартир и домов, но и помещений для работы. Посетив магазин, вы сможете убедиться, что современные производители предлагают к продаже теплоизоляцию в широком ассортименте. Она имеет вид жгутов, рулонов, гранул, порошков, а также перлитового песка. Кроме того, теплоизоляция может быть представлена плитами, блоками, кирпичами и цилиндрами.

Если разобраться в характеристиках, то можно выбрать тот вариант утепления, который необходим. Главным свойством теплоизоляции является ее теплопроводность, она указывает на то, сколько тепла проходит через данный материал. На сегодняшний день известна теплоизоляция двух типов:

Первая разновидность позволяет уменьшить расход тепла, что обеспечивается снижением инфракрасного излучения. Предотвращающая теплоизоляция используется в большинстве случаев и предусматривает использование утеплителя с низкой теплопроводностью. В этом качестве могут использоваться следующие материалы:

Предотвращающая теплоизоляция на органической основе

Рассматривая виды утеплителей, вы должны обратить внимание на те, что выполнены на органической основе. Они широко представлены на современном рынке, а для их изготовления используется естественное сырье, например отходы деревообрабатывающего производства и сельскохозяйственной промышленности. В состав таких утеплителей входят цемент и пластик.

Материал обладает высокой устойчивостью к возгоранию, он не реагирует на биологические воздействия и не намокает. Используют его там, где поверхность не нагревается выше 150 °C. Органическое утепление применяется в роли внутреннего слоя при устройстве многослойных конструкций. Сюда следует отнести оштукатуренные фасады или тройные панели.

Характеристики арболитового утеплителя

Теплоизоляцией на органической основе как раз и является арболитовый утеплитель, который представляет собой новый строительный материал из:

В основе имеются химические элементы и цемент. В качестве добавок выступают:

  • растворимое стекло;
  • сернокислый глинозем;
  • хлористый кальций.

На заключительном этапе изготовления арболитовой теплоизоляции материал обрабатывается минерализатором. Данный вид утеплителя обладает плотностью в пределах от 500 до 700 кг/м 3 . Предел прочности на сжатие достигает 3,5 МПа. Коэффициент теплопроводности равен 0,12 Вт/(м·К) максимум. Важно знать ещё и предел прочности на изгиб, он достигает 1 МПа.

Назначение и применение арболита

Рассматривая вышеописанный вид утеплителя, вы должны ближе ознакомиться с его назначением. Его используют для возведения перегородок и стен в частном малоэтажном строительстве. Изделия могут быть представлены:

  • плитами перекрытия;
  • панелями;
  • блоками.

Первые используются для утепления пола и кровли. Что касается плит перекрытия, то они усиливаются железобетонными конструкциями. Для монолитного строительства используется арболитовый раствор. На сегодняшний день известна ещё одна разновидность данной изоляции – костробетон, в качестве наполнителя которого выступает конопляная костра.

Арболитовые блоки для теплоизоляции укладываются после нанесения слоя смеси для монтажа. Далее устанавливается блок, который предварительно следует смочить водой. Изделие прижимается к предыдущему, его положение можно корректировать относительно основной кладки с помощью молотка с резиновой насадкой. Излишки смеси нужно будет убрать мастерком. Работы можно осуществлять лишь при температуре воздуха не ниже +6 °C. Раствор должен быть довольно густым, ведь если его консистенция окажется жидкой, то материал будет давать усадку.

Характеристики утеплителя из ДСП

Рассматривая виды утеплителей, стоит обратить внимание на теплоизоляцию из ДСП, в основе которой мелкая стружка. Она составляет 9/10 объема материала, а вот остальное – это антисептическое вещество, синтетические смолы, гидрофобизатор и антипрен. Плотность этого материала составляет 1000 кг/м 3 максимум. Минимальное значение составляет 500.

Вас может заинтересовать и влажность, она у данной теплоизоляции варьируется

Утеплители для наружных стен дома

Вполне реальная ситуация — в частном доме смонтирована и запущена эффективная система отопления, но не удается при этом добиться комфортных условий проживания, если само здание не имеет хорошей термоизоляции. Потребление любых энергоносителей в такой ситуации подскакивает до совершенно немыслимых пределов, но выработанное тепло совершенно бесполезно расходуется на «прогрев улицы».

Утеплители для наружных стен домаУтеплители для наружных стен дома

Утеплению должны подвергаться все основные элементы и конструкции здания. Но на общем фоне по объему теплопотерь лидируют внешние стены, и об их надежной термоизоляции необходимо думать в первую очередь. Утеплители для наружных стен дома в наше время представлены в продаже в очень широком ассортименте, и нужно уметь ориентироваться этом многообразии, так как не все материалы одинаково хороши для тех или иных условий.

Основные способы утепления внешних стен дома

Основная задача утепления стен – это доведение суммарного значения их сопротивления теплопередаче до расчетного показателя, который определён для данной местности. На методике расчёта мы обязательно остановимся несколько ниже, после рассмотрения физических и эксплуатационных характеристик основных типов утеплителя. А для начала следует рассмотреть существующие технологии термоизоляции внешних стен.

  • Чаще всего прибегают к внешнему утеплению уже возведенных стен строения. Такой подход способен в максимальной степени решить все основные проблемы теплоизоляции и сбережения стен от промерзания и сопутствующим этому процессу негативным явлениям порчи, отсыревания, эрозии строительного материала.

Способов внешнего утепления – немало, но в частном строительстве чаще всего прибегают к двум технологиям.

— Первая – это оштукатуривание стен поверх термоизоляционного слоя.

Схема утепления стены с последующей штукатурной отделкойСхема утепления стены с последующей штукатурной отделкой

1 – внешняя стена здания.

2 – монтажный клей, на который вплотную, без зазоров, крепится термоизоляционный материал (поз. 3). Надежную фиксацию, кроме того, обеспечивают специальные дюбели – «грибки» (поз. 4).

5 – базовый штукатурный слой со стекловолоконным сетчатым армированием внутри (поз. 6).

7 – слой декоративной штукатурки. Может использоваться и фасадная краска.

— Вторая – облицовка утепленных снаружи стен декоративными материалами (сайдингом, панелями, «блок-хаусом» и т.п.) по системе вентилируемого фасада.

Утепление и отделка по принципу вентилируемого фасадаУтепление и отделка по принципу вентилируемого фасада

1 – капитальная стена дома.

2 — каркас (обрешетка). Может выполняться из деревянного бруса или же из оцинкованных металлическим профилей.

3 – уложенные между направляющими обрешетки плиты (блоки, маты) термоизоляционного материала.

4 – гидроизоляционная диффузная паропропускающая мембрана, одновременно выполняющая и роль ветрозащиты.

5 – элемент конструкции каркаса (в данном случае – рейка контробрешетки), создающий воздушный вентилируемый зазор толщиной порядка 30 ÷ 60 мм.

6 – внешняя декоративная облицовка фасада.

Каждый из способов имеет свои достоинства и недостатки.

Так, оштукатуренная утепленная поверхность (ее часто называют «термошубой») – достаточно сложна в самостоятельном исполнении, если у хозяина дома нет устойчивых навыков штукатурных работ. Процесс это – достаточно «грязный» и трудоемкий, но по суммарным затратам на материалы обычно подобное утепление обходится дешевле.

Существует и «комплексный подход» к подобному внешнему утеплению стен – это применение облицовочных фасадных панелей, конструкцией которых уже предусмотрен слой термоизоляции. Штукатурных работ в данном случае не предвидится – после монтажа останется только лишь заполнить швы между плитками.

Отделка фасада декоративными термопанелямиОтделка фасада декоративными термопанелями

Монтаж вентилируемого фасада практически не предполагает «мокрых» работ. Но общие трудозатраты – весьма значительны, да и стоимость всего комплекта материалов будет очень немалой. Но зато и утеплительные качества, и эффективность защиты стен от различных внешних воздействий в данном случае – существенно выше.

Такой подход к термоизоляции стен вызывает очень много нареканий. Здесь – и существенные потери жилой площади помещения, и сложности в создании полноценного утепленного слоя без «мостиков холода» — они обычно остаются в области примыкания стен к полам и перекрытиям, и нарушение оптимального баланса влажности и температур в таком «пироге».

Утепление внешних стен изнутриУтепление внешних стен изнутри

Безусловно, расположение термоизоляции на внутренней поверхности иногда становится чуть ли не единственно доступным способом утеплить стены, но при любой возможности все же стоит отдать предпочтение внешнему утеплению.

kalkuljator-gipsokartona-1Стоит ли утеплять стены изнутри?

Обо всех недостатках и, без преувеличения, опасностях внутреннего утепления стен минеральной ватой очень подробно изложено в специальной публикации нашего портала.

  • Утепление стен созданием «сэндвич-конструкции»

Обычно такая технология утепления внешних стен применяется еще в ходе возведения здания. Здесь также могут быть использованы несколько различных подходов.

А. Стены выкладываются по принципу «колодца» и по мере их поднятия в образующуюся полость производится засыпка сухого или заливка жидкого (вспенивающегося и застывающего) термоизолятора. Такой метод применялся зодчими с давних пор, когда для утепления использовали природные материалы – сухие листья и хвою, опилки, выбракованные остатки шерсти и т.п. В наше время, безусловно, чаще применяются специальные термоизоляционные материалы, адаптированные под такое использование.

Варианты засыпки (заливки) утеплителей в полость стеновой конструкцииВарианты засыпки (заливки) утеплителей в полость стеновой конструкции

Как вариант, для кладки стены могут использоваться крупные газобетонные блоки с обширными полостями, которые в ходе строительства сразу заполняются теплоизоляционным материалом (керамзитом, вермикулитом, перлитовым песком и т.п.)

Б. Другой вариант опустим как при первоначальном строительстве дома, так и при необходимости создать термоизоляцию в уже возведенном ранее здании. Суть заключается в том, что капитальная стена утепляется тем или иным материалом, который затем закрывается кирпичной кладкой в один или ½ кирпича.

Укладка утеплительных плит с дальнейшей обкладкой кирпичомУкладка утеплительных плит с дальнейшей обкладкой кирпичом

Обычно в таких случаях внешняя кладка выполняется «под расшивку» и становится финишной облицовкой фасада.

Существенный недостаток этого способа, если приходится выполнять такое утепление в уже возведенном домке – необходимо обязательно расширять и усиливать фундамент, так как и толщина стены становится существенно больше, и нагрузки от дополнительной кирпичной кладки заметно возрастут.

В. Утепленная многослойная конструкция получается и при использовании для возведения стен пенополистирольной несъёмной опалубки.

Блоки такой пенополистирольной опалубки чем-то напоминают известный детский конструктор «LEGO» — они имеют шипы и пазы для быстрой сборки стеновой конструкции, в которую по мере поднятия устанавливается арматурный пояс и производится заливка бетонного раствора. В итоге получается железобетонные стены, сразу имеющие два – наружный и внутренний, утеплительных слоя. Затем по фасадной стороне стены можно сделать тонкую кирпичную кладку, плиточную облицовку или просто штукатурное покрытие. Внутри также применимы практически все виды отделки.

Возведение стен по технологии несъемной опалубкиВозведение стен по технологии несъемной опалубки

Такая технология набирает популярность, хотя, справедливости ради, нужно отметить, что и противников у нее немало. Основными аргументами являются недостатки пенополистирола с точки зрения экологической и противопожарной безопасности. Есть определенные проблемы и м паропроницаемостью стен и смещением точки росы в сторону помещений из-за слоя внутреннего утепления. Но с тем, что стены действительно получают надежную термоизоляцию, согласны, видимо, все.

Каким требованиям еще должно соответствовать утепление внешних стен

Понятно, что термоизоляционная прослойка на стене в первую очередь должна свести к допустимому минимуму теплопотери здания. Но, выполняя свою главную функцию, она не должна допустить негативных моментов – угрозы здоровью проживающих в доме людей, повышенной пожарной опасности, распространения патогенной микрофлоры, отсыревания конструкций с началом деструктивных процессов в стеновом материале и т.п.

Так, с точки зрения экологической безопасности очень много вопросов вызывают утеплители на синтетической основе. Если прочитать рекламные проспекты производителей, то практически всегда можно встретить заверения об отсутствии какой бы то ни было угрозы. Тем не менее, практика показывает, что большинство вспененных полимеров имеют свойство со временем распадаться, и продукты разложения не всегда являются безвредными.

Еще тревожнее выглядит ситуация с возгораемостью – низкий класс горючести (Г1 или Г2) вовсе не говорит о полной безопасности материала. Но чаще страшен даже не перенос открытого пламени (современные материалы в большинстве своем замозатухают), а продукты горения. Печальная история показывает, что именно токсические отравления дымом, получающимся при сгорании, к примеру, пенополистирола, чаще всего становятся причиной человеческих жертв. И следует хорошенько подумать, чем хозяин рискует, устраивая, к примеру, подобную термоизоляцию внутри помещения.

Жуткая картина - горение утепленного фасадаЖуткая картина — горение утепленного фасада

О конкретных достоинствах и недостатках основных термоизоляционных материалов будет рассказано подробнее в соответствующем разделе статьи.

Следующий важный фактор, который должен обязательно учитываться при планировании утепления. Термоизоляция стен должна максимально выносить «точку росы» как можно ближе к внешней поверхности стены, а в идеале – в наружный стой утеплительного материала.

«Точка росы» — это не линейно изменяющаяся граница в стеновом «пироге», на которой происходит переход воды из одного агрегатного состояния в другое – пар превращается в жидкий конденсат. А скопление влаги – это промокание стен, разрушение строительного материала, набухание и потеря качеств утеплителя, прямой путь к образованию и развитию очагов плесени или грибка, гнезд насекомых и т.п.

А откуда в стене может взяться водяной пар? Да очень просто – даже в процессе обычной жизнедеятельности человек с дыханием выделяет не менее 100 г влаги в час. Добавьте сюда влажные уборки, стирки и сушки белья, принятие ванн или душа, приготовление пищи или просто кипячение воды. Получается, что в холодное время года давление насыщенных паров в помещении всегда значительно выше, чем на открытом воздухе. И если в доме не предприняты меры по эффективной вентиляции воздуха, влага ищет себе пути через строительные конструкции, в том числе и через стены.

Это – вполне нормальный процесс, который не принесет никакого вреда, если утепление спланировано и реализовано правильно. Но в тех случаях, когда «точка росы» смещена в сторону комнат (это – типичный недостаток утепления стен изнутри), баланс сможет нарушиться, и стена с утеплителем начнут насыщаться влагой.

Чтобы минимизировать или полностью исключить последствия образования конденсата, следует придерживаться правила – паропроницаемость стенового «пирога» в идеале должно нарастать от слоя к слою в сторону их помещения наружу. Тогда с естественным испарением в атмосферу излишки влаги будут выходить.

Для примера, в таблице ниже приведены значения паропропускающей способности основных строительных, утеплительных и отделочных материалов. Это должно помочь при первичном планировании термоизоляции.

МатериалКоэффициент паропроницаемости, мг/(м*ч*Па)
Железобетон0.03
Бетон0.03
Раствор цементно-песчаный (или штукатурка)0.09
Раствор цементно-песчано-известковый (или штукатурка)0,098
Раствор известково-песчаный с известью (или штукатурка)0.12
Керамзитобетон, плотность 800 кг/м30.19
Кирпич глиняный, кладка0.11
Кирпич, силикатный, кладка0.11
Кирпич керамический пустотелый (1400 кг/м3 брутто)0.14
Кирпич керамический пустотелый (1000 кг/м3 брутто)0.17
Крупноформатный керамический блок (тёплая керамика)0.14
Пенобетон и газобетон, плотность 800 кг/м30.140
Плиты фибролитовые и арболит, 500-450 кг/м30,11
Арболит, 600 кг/м30.18
Гранит, гнейс, базальт0,008
Мрамор0,008
Известняк, 1600 кг/м30.09
Известняк, 1400 кг/м30.11
Сосна, ель поперек волокон0.06
Сосна, ель вдоль волокон0.32
Дуб поперек волокон0.05
Дуб вдоль волокон0.3
Фанера клееная0.02
ДСП и ДВП, 600 кг/м30.13
Пакля0.49
Гипсокартон0,075
Плиты из гипса (гипсоплиты), 1350 кг/м30,098
Плиты из гипса (гипсоплиты), 1100 кг/м30.11
Минвата каменная, в зависимости от плотности 0,3 ÷ 0,370,3 ÷ 0,37
Минвата стеклянная, в зависимости от плотности 0,5 ÷ 0,54
Пенополистирол экструдированный (ЭППС, XPS)0,005 ; 0,013; 0,004
Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м30.05
Эковата целлюлозная (в зависимости от плотности)0,30 ÷ 0,67
Пенополиуретан, при любой плотности 0.05
Керамзит насыпной — гравий, в зависимости от плотности0,21 ÷ 0,27
Песок0.17
Битум0,008
Рубероид, пергамин0 — 0,001
Полиэтилен0,00002 (практически непроницаем)
Линолеум ПВХ2E-3
Сталь0
Алюминий0
Медь0
Стекло0
Пеностекло блочное0 (редко 0,02)
Пеностекло насыпное0,02 ÷ 0,03
Пеностекло насыпное, плотность 200 кг/м30.03
Плитка (кафель) керамическая глазурованная≈ 0
ОСП (OSB-3, OSB-4)0,0033-0,0040

Для примера взглянем на схему:

Расположение слоев по паропропускающей способностиРасположение слоев по паропропускающей способности

1 – капитальная стена здания;

2 – слой термоизоляционного материала;

3 – слой внешней отделки фасада.

Синие широкие стрелки – направление диффузии водных паров из помещения в сторону улицы.

На фрагменте «а» показана стане, которая с очень большой долей вероятности всегда будет оставаться сырой. Показатель паропроницаемости используемых материалов снижается в направлении улицы, и свободная диффузия пара будет очень ограничена, если вообще не прекратится.

Фрагмент «б» — утеплённая и отделанная стена, в которой соблюден принцип увеличения паропропускающей способности слоев – избыток влаги свободно испаряется в атмосферу.

Безусловно, далеко не во всех случаях по, тем или иным причинам возможно достичь таких идеальных условий. В таких ситуациях необходимо постараться в максимальной степени предусмотреть выход влаги, ну а если внешняя отделка стен планируется материалом, паропроницаемость которого близка к нулевой, то лучше всего будет смонтировать так называемый «вентилируемый фасад» (поз. 4 на фрагменте «в»), о котором в статье уже упоминалось.

Если же будет монтироваться термоизоляция из не пропускающих пар материалов, то здесь ситуация сложнее. Придется предусматривать надёжную пароизоляцию, которая исключит или сведет к минимуму вероятность попадания паров изнутри помещения стеновую конструкцию (некоторые утеплители сами по себе являются надежной преградой для проникновения паров). И все же в полной мере предотвратить «консервацию» влаги в стене так вряд ли удастся.

Могут возникнуть закономерные вопросы – а как же в летнее время, когда давление водяных паров на улице нередко превышает аналогичные показатели внутри дома? Не будет ли обратной диффузии?

Да, такой процесс в определенной мере будет, но этого бояться не надо – в условиях повышенных летних температур происходит активное испарение влаги, и стена никак не сможет насытиться водой. При нормализации влажностного баланса стеновая конструкция перейдет в обычное сухое состояние. А временно повышенная влажность особой угрозы не представляет – она опасна больше при низких температурах и промерзании стен – вот тогда выпадение конденсата достигает пика. Кроме того, в летнее время в большинстве домов постоянно открыты окна или форточки, и сколь-нибудь значимого перепада давления паров для обильной обратной диффузии просто не будет.

Для нормализации баланса влаги и температуры требуется эффективная вентиляцияДля нормализации баланса влаги и температуры требуется эффективная вентиляция

В любом случае, кокой бы качественной ни была термоизоляция, и как бы оптимально она ни располагалась, все же наиболее действенной мерой для нормализации влажностного баланса является эффективная вентиляция помещений. Та отдушина, которая располагается на кухне или в санузле, самостоятельно с подобной задачей ну никак не справится!

Интересно, что с такой остротой вопрос вентиляции стал подниматься сравнительно недавно – с началом массовой установки хозяевами квартир металлопластиковых окон со стеклопакетами и дверей с герметичными уплотнителями по периметру. В домах старой постройки деревянные окна и двери были своеобразным «вентиляционным каналом», и вместе с отдушинами в какой-то мере справлялись с задачей воздухообмена.

водаВопросам вентиляции – особое внимание!

Явные признаки недостаточности вентиляции в квартире – обильный конденсат на стеклах и пятна сырости по углам оконных откосов. Отчего запотевают пластиковые окна и как с этим бороться – в отдельной публикации нашего портала.

Какие материалы используют для утепления внешних стен

Теперь перейдем к, собственно, рассмотрению основных материалов, которые применяются для утепления внешних стен дома. Основные технические и эксплуатационные параметры будут, как правило, преподнесены в виде таблиц. А внимание в тексте будет сконцентрировано на особенностях материала в плане его использования именно в этой области.

Материалы сыпучего типа

Для утепления стен при соблюдении определённых условий могут применяться материалы, которыми заполняются полости внутри стеновой конструкции, либо они используются для создания легких растворов, обладающих термоизоляционными качествами.

Керамзит

Изо всех материалов подобного типа самым известным является

что это такое, внутренняя тепло-отделка жилых помещений, термостойкая пленка или листовые материалы для изоляции стыков и откосов, что лучше использовать

Строя дома, люди заботятся об их прочности и внешней красоте, стараются максимально полно использовать доступную площадь. Но проблема в том, что в российском климате этого недостаточно. Обязательно потребуется обеспечивать усиленную теплозащиту, даже если строительство ведется в относительно теплой местности.

Особенности и описание

Теплоизоляция стен дома – это совокупность материалов и технических решений, препятствующих утечке тепла наружу через стены. Для решения этой задачи требуется:

  • отразить инфракрасные лучи во внутренние помещения дома;
  • заблокировать по возможности выход наружу тепла;
  • максимально затруднить конвективную утечку его;
  • гарантировать сохранность основных конструкций;
  • добиться стабильной гидроизоляции утепляющего слоя (даже непромокаемый лучше защищать дополнительно).

Такое определение в реальности, к сожалению, приходится корректировать. Ведь создание непроницаемой для тепловой энергии оболочки вокруг дома на практике или очень сложно и дорого, или вовсе нереализуемо по техническим причинам. Большие проблемы приносят так называемые мостики холода, разрывающие монолитность теплозащиты и понижающие ее эффективность. Существует только два способа решить эту проблему кардинально – применение пеностекла или торкретирование от границы с подвалом до конька. Но у обеих схем есть существенные недостатки, которые обязательно нужно учесть.

Кроме мостиков холода, придется обращать внимание на:

  • продуваемость материалов и конструкций;
  • их взаимодействие с влагой;
  • необходимость в пароизоляции или паропроницаемой оболочке;
  • прочность крепления и его нюансы;
  • интенсивность солнечного освещения;
  • среднегодовую и максимальную высоту снежного покрова.

Обзор сырья

Большое значение при теплоизоляции домашних стен имеет точность выбора основного материала. Так, органические средства теплозащиты представлены в первую очередь пенопластом разнородной плотности. Они имеют удельную массу от 10 до 100 кг на 1 куб. м. Это позволяет подобрать оптимальную по нагрузке на фундамент и тепловым качествам схему. Но есть серьезный недостаток: слабая стойкость к огню, поэтому есть потребность в конструкционной защите несгораемыми материалами.

Другие органические средства теплоизоляции – это:

  • продукты переработки лесных отходов и бракованной древесины;
  • плиты на основе торфа;
  • отходы сельского хозяйства (конструкции из соломы, камыша и так далее).

Термостойкая защита подобными способами вполне возможна. Но придется мириться со слабой устойчивостью к воде, к разрушительным биологическим агентам. Поэтому в современном строительстве такими блоками в качестве теплоизоляции пользуются все реже. Гораздо более востребованы оказываются минеральные материалы:

  • каменная вата;
  • стекловолокно;
  • блоки из перлита и вермикулита;
  • ячеистые бетоны и ряд других изделий.

Минераловатные плиты делают, перерабатывая расплав горных камней или отходов металлургического производства до состояния стекловидного волокна. Удельная масса получаемых изделий варьируется от 35 до 350 кг на 1 куб. м. Но при замечательном уровне сдерживания тепла минеральная вата недостаточно прочна и легко портится водой. Только наиболее современные разновидности ее имеют необходимую степень защиты.

По традиции часть людей пользуется для утепления стен керамзитом. Но такое решение трудно назвать оптимальным. Даже самый легкий сорт керамзита оказывает значительную нагрузку на основание. А использовать его придется много, потому что наружу будет уходить втрое больше тепла (при одинаковом слое), чем через самые эффективные утеплители. И, наконец, слой керамзита легко промокает и очень плохо сушится. Неудивительно, что пленка различных видов получает все более широкое распространение. Она помогает повысить гидроизоляцию внутренней части стен, особенно хорошо проявляет себя полиэтилен.

В отдельных случаях для теплозащиты стен применяется полиуретановая пена. Надежность такого покрытия оценена строителями по достоинству. Но обязательно придется для его нанесения надевать защитную экипировку. Пенная изоляция пропускает пар и сдерживает поступление воды. Допускается ее применение для закрытия щелей при монтаже в стену пластикового окна.

Монолитная листовая теплоизоляция монтируется проще, чем пенная, и не требует обычно специализированного оборудования.

Современные производители научились делать листы, способные работать в широком диапазоне температур и сохранять эластичность. С помощью этих же конструкций легко будет обеспечить теплозащиту труб и других входящих в дом коммуникаций. Теплоизоляционная мембрана бывает двух основных видов: первый сдерживает проникновение водяных паров изнутри помещения, а второй – позволяет образующемуся внутри стены пару свободно уходить. Ключевое значение при выборе второго вида материалов стоит уделить их паропропускной способности, то есть количеству уходящих испарений в единицу времени. Гибкая многослойная теплоизоляция применяется либо для утепления труб, либо для отражения тепловых лучей внутрь внешней фольгированной оболочкой.

Характеристики

Качественная теплоизоляция почти всегда выполняет одновременно и роль шумоизоляции. Выбор такого решения оправдан, потому что требуется максимально сократить расходы на строительство и снизить общую толщину стен. Надежное гашение звука невозможно реализовать, если не учесть отличия воздушных шумов (движущихся в воздухе) и ударных (передающихся при вибрации конструкций). Стены должны полноценно изолировать людей от воздушного шума. Наружные стены при этом имеют неодинаковый уровень защиты, который не нормируется.

Стандартные значения защиты от шума – всего лишь минимальные ориентиры, меньше их не должно быть в любом случае. На практике рекомендуется вовсе превысить эти показатели на 5-7 дБ, тогда обстановка станет комфортной. Для внешних стен поглощение воздушного шума советуют делать от 55 дБ, а вблизи железных дорог, аэропортов, федеральных трасс – как минимум 60 дБ. Поглощение звука обеспечивается пористыми либо волокнистыми тяжелыми материалами; чаще всего для этой цели применяют минеральную вату, песок. Сравнительно недавно начали использоваться мембраны на полимерной основе с губчатой структурой, имеющей толщину не более 0,5 см.

В большинстве случаев поглотитель шума располагают между материалами, отражающими звук. Но иногда практикуется двухслойное, четырехслойное или пятислойное покрытие.

Чтобы минимизировать проникновение звука внутрь, нужно разорвать мостики акустической передачи при помощи специальных креплений. Обязательно придется использовать акустические крепления, которые представлены множеством видов. Только специалисты смогут правильно выбрать подходящий вариант.

Рейтинг производителей

Сравнение свойств отдельных материалов логично дополнить сопоставлением уровня конкретных производителей. Базальтовая вата марки «Тизол» монтируется очень легко, величина листов составляет 100х50 см. Но нужно учитывать, что лист может рассыпаться из-за неоднородной плотности в разных местах, также в нем могут появляться изъяны. За сезон вата опускается на 15-20 мм. Приобрести «Тизол» можно в любом специализированном магазине.

Конкурирующая фирма «Роквол» может предложить базальтовую вату плотностью 37 кг на 1 куб. м. Здесь также все в порядке с монтажом при проемах каркаса в 59 см. Одна упаковка позволяет перекрыть около 6 м2 стены. Найти продукцию компании легко во многих торговых точках. Тара очень надежная, даже грубое обращение с ней (в умеренных пределах) не повредит материал; срок службы порадует домовладельцев.

«Техно-Роклайт» тоже относится к числу легко устанавливаемых материалов. Есть четыре ключевых типоразмера, позволяющих подобрать оптимальный вид в конкретном случае. Но укороченные волокна легко рассыпаются, потому работу допустимо вести только в перчатках и при надетом респираторе. Купить «Роклайт» в отдельных регионах РФ не получится. Тара недостаточно надежна, в процессе погрузки тюки могут развалиться.

Минеральная вата фирмы «Изовер» продается в виде рулонов и плит. Технологи сумели преодолеть их традиционную колкость и повысить прочность. Реализуется такой товар во всех специализированных магазинах. Нарезка и укладка довольно просты. Но есть и проблемы – неприятные ароматы, необходимость использовать защитные приспособления, недостаточная информативность надписей на упаковке.

Продукция Knauf отличается широким спектром вариантов и эффективно гасит звук. В составе минеральной ваты германского концерна отсутствуют токсичные фенолформальдегиды и многие другие компоненты. Исключено крошение материала, блоки очень легкие.

Поставить плиту можно под удобным углом. Что касается проблем, опять же нужно использовать средства защиты.

Как выбрать?

Разобравшись с марками, стоит еще раз изучить особенности конкретных видов. Специалисты рекомендуют предварять изучение отзывов определением подходящего типа утеплительного материала. Крайне редко сейчас применяют сыпучие наполнители, в основном, используются рулоны и плиты. Дополнительно вводится разграничение на волокнистый, жидкий и ячеистый форматы. Пользоваться вторым типом без специального оборудования бывает затруднительно.

Очень важно обращать внимание, подходит ли конкретный утеплитель только для внутренней или для внешней обработки стен. При выборе стоит также выяснять, насколько велик коэффициент теплопроводности – чем он меньше, тем большее количество тепла остается в доме. Если нужно добиться длительной службы покрытия, предпочтение отдают материалам, минимально впитывающим воду. Это же обстоятельство прямо влияет на устойчивость к появлению грибка. Следующий важный параметр – стойкость к действию пламени; отдельные материалы даже при нагреве до 1000 градусов не теряют исходной структуры.

Даже если утеплитель соответствует этим требованиям, полезно выяснить, насколько хорошо он:

  • сопротивляется деформирующим усилиям;
  • останавливает пар;
  • выдерживает воздействие грызунов и микроорганизмов.

Для внутренней теплоизоляции стен дома трудно отыскать что-то совершеннее пенополистирола. Плиты из него всегда тонкие и не уменьшают доступное пространство. Исключение впитывания влаги помогает вывести точку росы наружу и снизить промерзание стен. Что не менее важно, во многих случаях удается обойтись без пароизоляции.

А вот когда планируется утеплять стены извне, лучше применять ППУ.

Пенополиуретан в основном напыляют на защищаемую поверхность, создавая монолитное полотно, не имеющее ни единого стыка и участка, где утекало бы тепло. Превосходная адгезия дает возможность использовать этот материал на любой поверхности. Среди органических утеплителей на первом месте находятся минераловатные изделия. Экономичный вариант их всегда оснащается фольгированным слоем. Не стоит ставить финансовые соображения на первое место, тогда результат будет некачественным в любом случае.

Технологии процесса

Применение для теплоизоляции минеральной ваты оправдано в той ситуации, когда утепление снаружи не представляется возможным. Первым шагом закономерно становится очистка поверхности от грязи. Особенно важно избавиться от следов плесени и обработать пораженные ею участки антисептическими смесями. Малейшие выемки и трещины стоит заделать цементными составами. Эффективным методом борьбы с неглубокими (до 30 мм) отверстиями оказывается применение монтажной пены.

Если глубина их больше, придется дополнять пену паклей. Применять антисептики и грунтовки требуется аккуратно, каждый слой должен высохнуть перед нанесением следующего пласта. Чтобы максимально повысить эффективность работы, нужно выравнивать поверхности, обеспечивая особо плотное прижатие конструкции либо бескаркасных утеплителей. На поверхности из кирпича, пенобетона либо газобетона наносят штукатурку, а поверх нее делается слой жидкой гидроизоляции. Каркасы формируются из деревянных или стальных профилей.

Дистанция, разделяющая вертикальные опоры, делается несколько меньшей, чем ширина рулонов утеплителя. Тогда примыкание будет очень надежным. Зазор до стеновых конструкций делается таким, чтобы туда поместилась плита и осталось несколько десятков миллиметров воздушного разрыва. Достигается это при помощи точечного применения клеевых смесей.

Плиты предпочтительнее рулонов, поскольку они меньше скатываются; справиться с этой проблемой окончательно помогает применение горизонтальных планок.

Монтаж паровых барьеров производится с верхних долей конструкций, при работе движутся по горизонтали. Основной метод крепления – двусторонний скотч. На деревянные подложки можно прикреплять пароизоляционную пленку при помощи мебельного степлера. Рекомендуется делать нахлест минимум 100 мм, при этом обязательно делают напуски на углах, полу и потолках. Монтажная лента и строительный скотч идеально подходят для герметизации соединительных стыков.

Приближение пленки к поверхности означает необходимость заполнять такие участки жидкими герметиками. Над «пирогом» ставится реечная контробрешетка, монтажная ширина ее составляет от 1,5 до 2,5 см. Благодаря контробрешетке удается сделать полноценный вентилирующий зазор. Сверху над ней ставится лицевая декоративная оболочка. Чтобы отказаться от использования пароизоляции, изнутри монтируют фольгу, которая должна быть повернута вглубь комнаты.

Иначе ведутся работы при использовании рулонных блоков. По поверхности расставляются скобы в виде буквы «П», они позволят установить профили из металла. Типичное вертикальное расстояние составляет 0,6 м, а по горизонтали дистанция может быть несколько меньше. При замере нужного количества минеральной ваты нельзя забывать о допуске в 0,1 м. Ушки скоб заблокируют передвижение утеплителя по вертикали. Когда они прижаты, ставят профили и прикрепляют ГКЛ.

По мнению профессионалов, утепление внутри намного хуже, чем наружная теплоизоляция жилых помещений. Это самый эффективный на практике вариант, вдобавок он не отбирает полезного места и позволяет избежать возникновения конденсата. Еще важным преимуществом такого решения оказывается предотвращение мостиков холода. Внешняя изоляция от мороза проводится при помощи мокрой или сухой методики. Мокрый вариант подразумевает нанесение изолирующего слоя напрямую на стену и последующую отделку по нему.

Общая толщина утеплительного блока достигает 150 мм. Минеральную вату «сажают» на клей или зонтичные метизы. Основание рекомендуется армировать. После этого проводят лицевую отделку, которая одновременно имеет и защитную функцию. Подобное решение рекомендуют для кирпичных и газобетонных построек. Каркасные дома перед укладкой минваты покрывают жесткими настилами из ориентированных плит.

Недопустимо монтировать минеральную вату во время дождя и при высокой влажности воздуха. Теоретически она может сохнуть, но ждать этого понадобится очень длительное время. Утеплитель снаружи всегда перекрывается защищающей от влаги пленкой. На откосах ставится металлический фартук, надежно защищающий и от контактов с осадками, и от ветра, и от дождя. Вокруг стеклопакетов все зазоры должны быть закрыты монтажной пеной; желательно позаботиться о ее защите от влаги.

Нельзя ограничиться утеплением одних стен, очень важно предусмотреть теплозащиту кровли. Через перекрытия здание покидает до 1/5 всего тепла.

Так как большинство скатных крыш оборудуется легко воспламеняющимися материалами, нужно применять только негорючий изоляционный материал. Кроме того, он должен свободно пропускать пары воды и не впитывать саму воду. Для плоской кровли изолирующий слой нужно ставить максимально крепкий и устойчивый, иначе он не выдержит создающуюся нагрузку.

Как подготовиться?

Расчеты утеплительных элементов предельно важн. Если проводить их плохо или не проводить вообще, можно столкнуться с серьезными проблемами. Так, слабое утепление не позволит поддержать комфортную температуру в помещениях дома. Кроме того, оно переместит точку росы на внутреннюю сторону стены. Образование конденсата провоцирует заражение плесенью и другими гнилостными организмами. Слишком мощная теплоизоляция решает эту проблему, но она неоправдана экономически, поскольку увеличение толщины слоя лишь незначительно повышает практические качества.

Необходимо учитывать тепловое сопротивление, которое нормировано для различных регионов и ключевых населенных пунктов. Грамотный расчет позволяет построить максимально тонкую (насколько возможно) стену и не ухудшать при этом потребительские качества дома. Стандартная формула для расчетов выглядит как αyt= (R0tp/r-0,16-δ/λ) ·λyt. Слева от знака равенства находится необходимая толщина утеплителя. Справа, вслед за нормируемым сопротивлением, идут:

  • толщина стен;
  • коэффициент ухода тепла через их несущую часть;
  • показатель потери тепла сквозь утеплитель;
  • индекс однородности материала для теплового потока.

Термические характеристики в стенных «пирогах» с воздушными промежутками могут не учитываться для внешней облицовки и самой вентилируемой паузы. Выбор подходящей ширины единичного рулона или плиты обусловлен соображениями удобства при работе.

Вместе с этим нельзя забывать, что чем меньше стыков будет сделано, тем выше будет надежность монтируемой конструкции.

Как сделать самостоятельно?

Выполнить монтаж теплоизоляции стен своими руками довольно просто. Но есть ряд нюансов, которые часто упускаются из виду самодеятельными мастерами. Так, в холодный период года стоит немного прикрывать вытяжные вентиляционные каналы и полностью блокировать их при длительном отсутствии. Так как до 80% всех потерь через стены приходится на тепловые лучи, отражательные теплоизоляторы предпочтительнее обычных. В уже эксплуатирующихся домах часто приходится делать внутреннее утепление, что требует дополнительного монтажа пароизоляционной преграды.

Теплоизоляция стен дает положительный результат только в том случае, если предварительно подготовлена теплозащита подвального помещения по всем правилам. Вентилируемый фасад создается путем прикрепления утеплительного слоя на дюбели или при помощи каркаса с внешней отделкой любым удобным способом. Если стену делают из кирпича, можно прибегать к колодезной кладке. Отсутствие возможности вентилировать ее означает, что придется применять устойчивые к влаге решения. Утепляющая штукатурка играет только вспомогательную роль, в дополнение к ней обязательно нужно делать подложку из покрытой грунтовкой сетки.

Полезные советы от профи

Не стоит игнорировать преимущества оштукатуривания утепленной стены. Да, это более трудоемко и грязно, чем отделка сухими блоками, но позволяет сочетать отделку и дополнительное сбережение тепла. Проницаемость стенного пирога для водяных паров должна плавно увеличиваться от внутренней поверхности наружу; любое другое соотношение слоев в корне неправильно. Вермикулит чрезвычайно дорог, но обойти эту трудность несложно – требуется только применять его не автономно, а в составе теплой штукатурки. Подобное решение, благодаря своей отменной проницаемости для пара, может использоваться практически везде.

О тонкостях выбора утеплителя для стен дома смотрите в видео ниже.

Теплопроводность строительных материалов — основные понятия, табличные значения, расчеты

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материаловТеплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении  влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещенияОтносительная влажность внутреннего воздуха при температуре:
до 12°Сот 13 до 24°С 25°С и выше
Сухойдо 60%до 50%до 40%
Нормальныйот 61 до 75%от 51 до 60%от 41 до 50%
Влажный 76% и более от 61 до 75%от 51 до 60%
Мокрый76% и более61% и более

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.Кстати, о влажности!..

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице)Зоны влажности (в соотвествии с картой-схемой)
3 — сухая2 — нормальная1 — влажная
СухойААБ
НормальныйАББ
Влажный или мокрыйБББ

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum— суммарное термическое сопротивление ограждающей конструкции;

 R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрахВ и Г ▲Г▼
tв > 0 ℃tв > 0 ℃
0.010.130.150.140.15
0.020.140.150.150.19
0.030.140.160.160.21
0.050.140.170.170.22
0.10.150.180.180.23
0.150.150.180.190.24
0,2-0,30.150.190.190.24
Примечания:
В и Г ▲ — воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх
Г▼ — воздушная прослойка горизонтальная при распространении тепла сверху вниз
tв > 0 ℃ — положительная температура воздуха в прослойке
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим.

Таблицы коэффициентов теплопроводности различных групп строительных материалов

Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материалаρ
Средняя плотность материала
кг/м³
λ₀
Коэффициент теплопроводности в идеальных условиях и в сухом состоянии
Вт/(м×℃)
λА
Коэффициент теплопроводности для условий эксплуатации А
Вт/(м×℃)
λБ
Коэффициент теплопроводности для условий эксплуатации Б
Вт/(м×℃)
Кирпичная кладка из сплошного кирпича на различных растворах
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе18000,560,700,81
Стандартный керамический на цементно-шлаковом растворе17000,520,640,76
Стандартный керамический на цементно-перлитовом растворе16000,470,580,70
Силикатный на цементно-песчаном кладочном растворе18000,700,760,87
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе12000,350,470,52
— то же, но с плотностью10000,290,410,47
Шлаковый, на цементно-песчаном кладочном растворе15000,520,640,70
Кладка из пустотного кирпича
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе16000,470,580,64
— то же, но с плотностью кирпича 1300 кг/м³14000,410,520,58
— то же, но с плотностью кирпича 1000 кг/м³12000,350,470,52
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе15000,640,700,81
— то же, четырнадцатипустотный14000,520,640,76
Кладка или облицовка поверхностей натуральным камнем
Гранит или базальт28003,493,493,49
Мрамор28002,912,912,91
Туф20000,760,931,05
— то же, но с плотностью18000,560,700,81
— то же, но с плотностью16000,410,520,64
— то же, но с плотностью14000,330,430,52
— то же, но с плотностью12000,270,350,41
— то же, но с плотностью10000,210,240,29
Известняк20000,931,161,28
— то же, но с плотностью18000,700,931,05
— то же, но с плотностью16000,580,730,81
— то же, но с плотностью14000,490,560,58
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Бетоны на плотном заполнителе
Железобетон25001.691.922.04
Бетон на натуральном гравии или щебне24001.511.741.86
Бетоны на натуральных пористых заполнителях
Пемзобетон16000.520.60.68
— то же, но с плотностью14000.420.490.54
— то же, но с плотностью12000.340.40.43
— то же, но с плотностью10000.260.30.34
— то же, но с плотностью8000.190.220.26
Туфобетон18000.640.870.99
— то же, но с плотностью16000.520.70.81
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.290.410.47
Бетон на вулканическом шлаке16000.520.640.7
— то же, но с плотностью14000.410.520.58
— то же, но с плотностью12000.330.410.47
— то же, но с плотностью10000.240.290.35
— то же, но с плотностью800200.230.29
Бетоны на искусственных пористых наполнителях
Керамзитобетон на кварцевом песке с поризацией12000.410.520.58
— то же, но с плотностью10000.330.410.47
— то же, но с плотностью8000.230.290.35
Керамзитобетон на керамзитовом песке или керамзитопенобетон1800660.80.92
— то же, но с плотностью16000.580.670.79
— то же, но с плотностью14000.470.560.65
— то же, но с плотностью12000.360.440.52
— то же, но с плотностью10000.270.330.41
— то же, но с плотностью8000.210.240.31
— то же, но с плотностью6000.160.20.26
— то же, но с плотностью5000.140.170.23
Керамзитобетон на перлитовом песке10000.280.350.41
— то же, но с плотностью8000.220.290.35
Перлитобетон12000.290.440.5
— то же, но с плотностью10000.220.330.38
— то же, но с плотностью8000.160.270.33
— то же, но с плотностью6000.120.190.23
Шлакопемзобетон18000.520.630.76
— то же, но с плотностью16000.410.520.63
— то же, но с плотностью14000.350.440.52
— то же, но с плотностью12000.290.370.44
— то же, но с плотностью10000.230.310.37
Шлакопемзопено и шлакопемзогазобетон16000.470.630.7
— то же, но с плотностью14000.350.520.58
— то же, но с плотностью12000.290.410.47
— то же, но с плотностью10000.230.350.41
— то же, но с плотностью8000.170.290.35
Вермикулетобетон8000.210.230.26
— то же, но с плотностью6000.140.160.17
— то же, но с плотностью4000.090.110.13
— то же, но с плотностью3000.080.090.11
Ячеистые бетоны
Газобетон, пенобетон, газосиликат, пеносиликат10000.290.410.47
— то же, но с плотностью8000.210.330.37
— то же, но с плотностью6000.140.220.26
— то же, но с плотностью4000.110.140.15
— то же, но с плотностью3000.080.110.13
Газозолобетон, пенозолобетон12000.290.520.58
— то же, но с плотностью10000.230.440.59
— то же, но с плотностью8000.170.350.41
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материалаρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Обычный цементно-песчаный раствор18000.580.760.93
Сложный раствор из цемента, песка, извести17000.520.70.87
Цементно-шлаковый раствор14000.410.520.64
Цементно-перлитовый раствор10000.210.260.3
— то же, но с плотностью8000.160.210.26
Известково-песчаный раствор16000.470.70.81
— то же, но с плотностью12000.350.470.58
Гипсово-перлитовый раствор6000.140.190.23
Гипсово-перлитовый поризованный раствор5000.120.150.19
— то же, но с плотностью4000.090.130.15

Related Articles

Профнастил по английски – профилированный лист — перевод с русского на английский , транскрипция, произношение, примеры, грамматика

Содержание профнастил — с русского на английскийАнглийский перевод – Словарь Lingueeпрофнастил — с английского на русскийпрофнастил — со всех языков на английскийпрофнастил — English translation – Lingueeпрофилированный лист — с русского на английскийСм. также в других словарях:Профнастила ▷ Перевод На АнглийскийФразы по алфавиту профнастил — с русского на английский профнастил — профнастил …   Орфографический […]
Читать далее

Коньковая доска – Установка коньковой доски | Все о ремонте и строительстве

Содержание Установка коньковой доски | Все о ремонте и строительствеУстройство двускатной крыши с висячими стропилами.СМОТРИТЕ ДРУГИЕ СТАТЬИ НА ЭТУ ТЕМУ:Коньковый брус – установка крепления стропил к коньковому брусуКаковы функции конькового бруса?Расчет сечения конькового брусаУстановка конькового брусакак правильно сделать конек стропилСпособ №1. ВнахлестСпособ №2. Соединение встыкСпособ №3. Соединение на брусУстройство двускатной крыши с висячими стропилами своими […]
Читать далее

Ершик для дымохода своими руками: из чего и как сделать

Содержание делаем сами и советы по чисткеПризнаки, причины и последствия засорения трубыПриспособления для механической прочистки дымоходаКак сделать ерш для чистки дымохода своими рукамиИзготовление ерша из пластикаИзготовление ерша из металлаОсобенности чистки дымоходаСоветы и рекомендации по очистке дымоходаСамодельный ерш для чистки дымохода: инструкция по изготовлениюПричины и последствия засорения дымоходаОсобенности механической чистки дымохода от сажи с помощью ершаКак […]
Читать далее

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Search for: