Расчет на изгиб двутавра – Расчет двутавра на прогиб и изгиб

    Расчет балки на изгиб — favorit-tk

    Расчет балки на изгиб
    Рассчитывать балку на изгиб можно несколькими вариантами:
    1. Расчет максимальной нагрузки, которую она выдержит
    2. Подбор сечения этой балки
    3. Расчет по максимальным допустимым напряжениям (для проверки)[/i]
    Давайте рассмотрим общий принцип подбора сечения балки на двух опорах загруженной равномерно распределенной нагрузкой или сосредоточенной силой.
    Для начала, вам необходимо будет найти точку (сечение), в которой будет максимальный момент. Это зависит от опирания балки или же ее заделки. Снизу приведены эпюры изгибающих моментов для схем, которые встречаются чаще всего.
    После нахождения изгибающего момента мы должны найти момент сопротивления Wx этого сечения по формуле приведенной в таблице:
    Далее, при делении максимального изгибающего момента на момент сопротивления в данном сечении, мы получаем максимальное напряжение в балке и это напряжение мы должны сравнить с напряжением, которое вообще сможет выдержать наша балка из заданного материала.
    Для пластичных материалов (сталь, алюминий и т.п.) максимальное напряжение будет равно пределу текучести материала, а для хрупких (чугун) – пределу прочности. Предел текучести и предел прочности мы можем найти по таблицам ниже.
    Давайте рассмотрим пару примеров:
    1. [i]Вы хотите проверить, выдержит ли вас двутавр №10 (сталь Ст3сп5) длиной 2 метра жестко заделанного в стену, если вы на нем повисните. Ваша масса пусть будет 90 кг.[/i]
    Для начала нам необходимо выбрать расчетную схему.
    На данной схеме видно, что максимальный момент будет в заделке, а поскольку наш двутавр имеет одинаковое сечение по всей длине, то и максимальное напряжение будет в заделке. Давайте найдем его:
    P = m * g = 90 * 10 = 900 Н = 0.9 кН
    М = P * l = 0.9 кН * 2 м = 1.8 кН*м
    По таблице сортамента двутавров находим момент сопротивления двутавра №10.
    Он будет равен 39.7 см3. Переведем в кубические метры и получим 0.0000397 м3.
    Далее по формуле находим максимальные напряжения, которые у нас возникают в балке.
    б = М / W = 1.8 кН/м / 0.0000397 м3 = 45340 кН/м2 = 45.34 МПа
    После того, как мы нашли максимальное напряжение, которое возникает в балке, то мы его может сравнить с максимально допустимым напряжением равным пределу текучести стали Ст3сп5 – 245 МПа.
    45.34 МПа
    2. [i]Поскольку у нас получился доволи-таки большой запас, то решим вторую задачу, в которой найдем максимально возможную массу, которую выдержит все тот же двутавр №10 длиной 2 метра.[/i]
    Если мы хотим найти максимальную массу, то значения предела текучести и напряжения, которое будет возникать в балке, мы должны приравнять (б=245 Мпа = 245 000 кН*м2).
    Далее по формуле б = М / W, находим максимальный момент.
    М = б * W = 245 000 * 0.0000397 = 9.73 кН * м
    Тогда по формуле M = P * L найдем P:
    P = 9,73 кН/м / 2м = 4,87 кН = 487 кг
    Итак, максимальная масса, которую выдержит двутавр №10 – 487 кг. Число это грубое, поскольку для простоты расчета мы не учитывали различные коэффициенты запаса, поэтому, чтобы подстраховаться, возьмите некий двукратный запас по прочности.

    favorit-tk.ru

    Расчет балки на изгиб | Блог Александра Воробьева

    Опубликовано 28 Апр 2013
    Рубрика: Механика | 88 комментариев

    Расчет балки на изгиб «вручную», по-дедовски, позволяет познать один из важнейших, красивейших, четко математически выверенных алгоритмов науки сопротивление материалов. Использование многочисленных программ типа «ввел исходные данные…

    …– получи ответ» позволяет современному инженеру сегодня работать гораздо быстрее, чем его предшественникам сто, пятьдесят и даже двадцать лет назад. Однако при таком современном подходе инженер вынужден полностью доверять авторам программы и со временем перестает «ощущать физический смысл» расчетов. Но авторы программы – это люди, а людям свойственно ошибаться. Если бы это было не так, то не было бы многочисленных патчей, релизов, «заплаток» практически к любому программному обеспечению. Поэтому, мне кажется, любой инженер должен уметь иногда «вручную» проверить результаты расчетов.

    Справка (шпаргалка, памятка) для расчётов балок на изгиб представлена ниже на рисунке.

    Давайте на простом житейском примере попробуем ей воспользоваться. Допустим, я решил сделать в квартире турник. Определено место – коридор шириной один метр двадцать сантиметров. На противоположных стенах на необходимой высоте напротив друг друга надежно закрепляю кронштейны, к которым будет крепиться балка-перекладина – пруток из стали Ст3 с наружным диаметром тридцать два миллиметра. Выдержит  ли эта балка мой вес плюс дополнительные динамические нагрузки, которые возникнут при выполнении упражнений?

    Чертим схему для расчета балки на изгиб. Очевидно, что наиболее опасной будет схема приложения внешней нагрузки, когда я начну подтягиваться, зацепившись одной рукой за середину перекладины.

    Исходные данные:

    F1 = 900 н – сила, действующая на балку (мой вес) без учета динамики

    b1 = 0 м

    b2 = 0,6 м

    b3 = 1,2 м

    d = 32 мм – наружный диаметр прутка, из которого сделана балка

    E = 206000 н/мм^2 — модуль упругости материала балки стали Ст3

    [σи] = 250 н/мм^2 — допустимые напряжения изгиба (предел текучести) для материала балки   стали Ст3

    Граничные условия:

    Мx (0) = 0 н*м – момент в точке z = 0 м (первая опора)

    Мx (1,2) = 0 н*м– момент в точке z = 1,2 м (вторая опора)

    V (0) = 0 мм – прогиб в точке z = 0 м (первая опора)

    V (1,2) = 0 мм – прогиб в точке z = 1,2 м (вторая опора)

    Расчет:

    1. Для начала вычислим момент инерции Ix и момент сопротивления Wx сечения балки. Они нам пригодятся в дальнейших расчетах. Для кругового сечения (каковым является сечение прутка):

    Ix = (π*d^4)/64 = (3.14*(32/10)^4)/64 = 5,147 см^4

    Wx = (π*d^3)/32 = ((3.14*(32/10)^3)/32) = 3,217 см^3

    2. Составляем уравнения равновесия для вычисления реакций опор R1 и R2:

    Qy = -R1+F1-R2 = 0

    Мx (0) = F1*(0-b2) -R2*(0-b3) = 0

    Из второго уравнения: R2 = F1*b2/b3 = 900*0.6/1.2 = 450 н

    Из первого уравнения: R1 = F1-R2 = 900-450 = 450 н

    3. Найдем угол поворота балки в первой опоре при z = 0 из уравнения прогиба для второго участка:

    V (1.2) = V (0)+U (0)*1.2+(-R1*((1.2-b1)^3)/6+F1*((1.2-b2)^3)/6)/

    /(E*Ix) = 0

    U (0) = (R1*((1.2-b1)^3)/6 -F1*((1.2-b2)^3)/6)/(E*Ix)/1,2 =

    = (450*((1.2-0)^3)/6 -900*((1.2-0.6)^3)/6)/

    /(206000*5,147/100)/1,2  = 0,00764 рад = 0,44˚

    4. Составляем уравнения для построения эпюр для первого участка (0<z<b2):

    Поперечная сила: Qy (z) = -R1

    Изгибающий момент: Мx (z) = -R1*(z-b1)

    Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2)/(E*Ix)

    Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6)/(E*Ix)

    z = 0 м:

    Qy (0) = -R1 = -450 н

    Мx (0) = 0

    Ux (0) = U (0) = 0,00764 рад

    Vy (0) = V (0) = 0 мм

    z = 0,6 м:

    Qy (0,6) = -R1 = -450 н

    Мx (0,6) = -R1*(0,6-b1) = -450*(0,6-0) = -270 н*м

    Ux (0,6) = U (0)+(-R1*((0,6-b1)^2)/2)/(E*Ix) =

    = 0,00764+(-450*((0,6-0)^2)/2)/(206000*5,147/100) = 0 рад

    Vy (0,6) = V (0)+U (0)*0,6+(-R1*((0,6-b1)^3)/6)/(E*Ix) =

    = 0+0,00764*0,6+(-450*((0,6-0)^3)/6)/ (206000*5,147/100) = 0,003 м

    Балка прогнется по центру на 3 мм под тяжестью моего тела. Думаю, это приемлемый прогиб.

    5. Пишем уравнения эпюр для второго участка (b2<z<b3):

    Поперечная сила: Qy (z) = -R1+F1

    Изгибающий момент: Мx (z) = -R1*(z-b1)+F1*(z-b2)

    Угол поворота: Ux (z) = U (0)+(-R1*((z-b1)^2)/2+F1*((z-b2)^2)/2)/(E*Ix)

    Прогиб: Vy (z) = V (0)+U (0)*z+(-R1*((z-b1)^3)/6+F1*((z-b2)^3)/6)/(E*Ix)

    z = 1,2 м:

    Qy (1,2) = -R1+F1 = -450+900 = 450 н

    Мx (1,2) = 0 н*м

    Ux (1,2) = U (0)+(-R1*((1,2-b1)^2)/2+F1*((1,2-b2)^2)/2)/(E*Ix) =

    = 0,00764+(-450*((1,2-0)^2)/2+900*((1,2-0,6)^2)/2)/

    /(206000*5,147/100) = -0.00764 рад

    Vy (1,2) = V (1,2) = 0 м

    6. Строим эпюры, используя данные полученные выше.

    7. Рассчитываем напряжения изгиба в наиболее нагруженном сечении – посередине балки и сравниваем с допустимыми напряжениями:

    σи = Mx max/Wx = (270*1000)/(3,217*1000) = 84 н/мм^2

    σи = 84 н/мм^2 < [σи] = 250 н/мм^2

    По прочности на изгиб расчет показал трехкратный запас прочности – турник можно смело делать из имеющегося прутка диаметром тридцать два миллиметра и длиной тысяча двести миллиметров.

    Таким образом, вы теперь легко можете произвести расчет балки на изгиб «вручную» и сравнить с результатами, полученными при расчете по любой из многочисленных программ, представленных в Сети.

    Прошу УВАЖАЮЩИХ труд автора ПОДПИСАТЬСЯ на анонсы статей.

    Другие статьи автора блога

    На главную

    Статьи с близкой тематикой

    Отзывы

    al-vo.ru

    Расчёт балок на прочность при изгибе

    Задача 1

    В некотором сечении балки прямоугольного сечения 20×30см М=28 кНм, Q=19 кН.

    Требуется:

    а) определить нормальное и касательное напряжения в заданной точке К, отстоящей от нейтральной оси на расстоянии 11 см,

    б) проверить прочность деревянной балки, если [σ]=10 МПа, [τ]=3 МПа.

    2014-09-15 23-00-10 Скриншот экрана

    Решение

    а) Для определения σ(К), τ(К) и maxσ,maxτ потребуется знать величины осевого момента инерции всего сечения IН.О., осевого момента сопротивления WН.О., статического момента отсечённой части  и статического момента половины сечения Smax:

    2014-09-15 23-03-51 Скриншот экрана

    Тогда:

    2014-09-15 23-04-37 Скриншот экрана

    б) Проверка прочности:

    по условию прочности нормальных напряжений:

    2014-09-15 23-06-19 Скриншот экрана

    по условию прочности касательных напряжений:

    2014-09-15 23-07-03 Скриншот экрана

    Задача 2

    В некотором сечении балки М=10кНм, Q=40кН. Поперечное сечение – треугольное. Найти нормальное и касательное напряжения в точке, отстоящей от нейтральной оси на расстоянии 15 см.

    2014-09-15 23-08-51 Скриншот экрана

    2014-09-15 23-09-59 Скриншот экранагде 2014-09-15 23-10-43 Скриншот экрана

    Тогда

    2014-09-15 23-11-50 Скриншот экранагде:

    2014-09-15 23-12-50 Скриншот экранаТогда

    2014-09-15 23-14-19 Скриншот экрана

    Задача 3

    Подобрать сечение деревянной балки в двух вариантах: круглое и прямоугольное (при h/b=2), если [σ]=10 МПа, [τ]=3 МПа, и сравнить их по расходу материала.

    2014-09-15 23-15-57 Скриншот экрана

    Задаёмся направлениями опорных реакций А и В и составляем уравнения статики:

    (1)          ∑М(В) = F·8 – М А·6 + (q·6)·3 =0,

    откуда 2014-09-15 23-17-43 Скриншот экрана

    (2)          ∑М(А) = F·2 – М + В·6 — (q·6)·3 =0,

    откуда 2014-09-15 23-18-54 Скриншот экрана

    Iучасток   

    2014-09-15 23-20-01 Скриншот экрана

    М(С) = М(z1) +F·z1=0,

    ММ(z1) = —F·z1= — 30 ·z1 —

    – уравнение прямой.

    При z1 = 0:      М = 0,

    z1 = 2:      М =- 60 кНм.

    у= — F — Q(z1) = 0,

    Q(z1) = — F = -30 кН – постоянная функция.

    II участок     

    2014-09-15 23-22-35 Скриншот экрана2014-09-15 23-23-22 Скриншот экрана

    откуда2014-09-15 23-24-24 Скриншот экрана

    — уравнение параболы.

    При z2=0:     М = 0,

    z2=3м:  М = 30 · 3 – 5 · 32 = 90 — 45 = 45кНм,

    z2=6м:  М = 30 · 6 – 5 · 62 = 180 — 180 = 0.

    у= Q(z2) — q·z2 + B= 0,

    Q(z2) = q·z2 — B= 10·z2 – 30 – уравнение прямой,

    при  z2 = 0:     Q = -30,

            z2 = 6м:     Q = 10·6 – 30 = 30.

    Определение аналитического максимума изгибающего момента второго участка:

    из условия2014-09-15 23-26-48 Скриншот экрананаходим 2014-09-15 23-27-42 Скриншот экрана:

    2014-09-15 23-28-30 Скриншот экранаИ тогда

    2014-09-15 23-29-25 Скриншот экрана

    Заметим, что скачок в эп.М расположен там, где приложен сосредоточенный момент М = 60кНм и равен этому моменту, а скачок в эп.Q – под сосредоточенной силой А = 60 кН.

    Подбор сечения балок производится из условия прочности по нормальным напряжениям, куда следует подставлять наибольший по абсолютной величине изгибающий момент из эпюры М.

    В данном случае максимальный момент по модулю М = 60кНм

    2014-09-15 23-32-18 Скриншот экранаоткуда: :

    2014-09-15 23-33-29 Скриншот экрана

    а) сечение круглой формы d=?

    2014-09-15 23-34-43 Скриншот экрана

    б) сечение прямоугольной формы при h/b = 2:

    2014-09-15 23-35-58 Скриншот экрана

    тогда

    2014-09-15 23-36-42 Скриншот экрана

    Размеры сечения, определенные из условия прочности по нормальным напряжениям, должны удовлетворять также условию прочности по касательным напряжениям:

    2014-09-15 23-37-53 Скриншот экрана

    Для простых форм сечений известны компактные выражения наибольшего касательного напряжения:

    для круглого сечения 2014-09-15 23-38-43 Скриншот экрана

    для прямоугольного сечения 2014-09-15 23-39-29 Скриншот экрана

    Воспользуемся этими формулами. Тогда

    — для балки круглого сечения при 2014-09-15 23-40-46 Скриншот экрана:

    2014-09-15 23-41-42 Скриншот экрана

    — для балки прямоугольного сечения

    2014-09-15 23-42-47 Скриншот экрана

    Чтобы выяснить, какое сечение требует меньшего расхода материала, достаточно сравнить величины площадей поперечных сечений:

    Апрямоугольного = 865,3см2 < Акруглого = 1218,6см2, следовательно, балка прямоугольного сечения в этом смысле выгоднее, чем круглого.

     

    Задача 4

    Подобрать двутавровое сечение стальной балки, если [σ]=160МПа, [τ]=80МПа. 

    2014-09-16 23-34-51 Скриншот экрана

    Задаёмся направлениями опорных реакций А и В и составляем два уравнения статики для их определения:

    (1)              ∑М(А) = – М1 F  ·2 — (q·8)·4 + М2 + В·6 =0,

    откуда 2014-09-16 23-36-10 Скриншот экрана

    (2)      ∑М(В) = – М1А

    · 6 + F · 4 + (q·8)·2 + М2 =0,

    откуда 2014-09-16 23-36-10 Скриншот экрана

    Проверка:

    у = АFq · 8 + В = 104 – 80 – 20 · 8 +136 = 240 – 240 ≡ 0.

    2014-09-16 23-38-31 Скриншот экрана

    М(С) = М(z1) — М1=0,

    М(z1) = М1= 40 кНм – постоянная функция.   

    у= — Q(z1) = 0,

    Q(z1) = 0.

    II участок 

    2014-09-16 23-40-27 Скриншот экранапарабола.

    Приz2=0:       М = 40 кНм,

    z2=1м:    М = 40 + 104 – 10=134кНм,

    z2=2м:    М = 40+ 104 · 2 – 10 · 22 = 208 кНм.

    у=А q·z2 — Q(z2) = 0,

    Q(z2) =Аq·z2 = 104 –  20·z2  – уравнение прямой,

    при  z2 = 0:       Q = 104кН,

            z2 = 6м:    Q = 104 – 40 = 64кН.

    III участок

    2014-09-16 23-42-45 Скриншот экрана— парабола.

    Приz3=0:       М = 24+40=-16 кНм,

    z3=2м:    М = 24 + 136·2 — 10 (2+2)2 = 24 + 272 – 160 = 136кНм,

    z3=4м:    М = 24 + 136·4 – 10 (2+4)2 = 24 + 544 – 360 = 208 кНм.

    у=В q(2+z3 ) + Q(z3) = 0,

    Q(z3) =- В + q(2+z3 ) = -136 + 20 (2+z3 )   – уравнение прямой,

    при  z3 = 0:        Q = -136 + 40 = — 94кН,

            z3 = 4м:     Q = — 136 + 20 (2+4) = — 136 + 120 = — 16кН.

    IV участок

    2014-09-16 23-59-29 Скриншот экрана парабола.

    z4=0:       М = 0кНм,

    z4=1м:    М = – 10кНм,

    z4=2м:    М = — 40кНм.

    у=- q·z4 + Q(z4) = 0,

    Q(z4) =q·z4 = 20·z4  – уравнение прямой.

    Приz4 = 0:       Q = 0,

            z4 = 2м:     Q = 40кН.

    Проверяем скачки в эпюрах:

    а) В эпюре М скачок на правой опоре величиной 24кНм (от 16 до 40) равен сосредоточенному моменту М2=24, приложенному в этом месте.

    б) В эпюре Q три скачка:

    первый из них на левой опоре соответствует сосредоточенной реакции А=104кН,

    второй – под силой F=80кН и равен ей (64+16=80кН),

    третий – на правой опоре и соответствует правой опорной реакции 136кН (94+40=136 кН)

    Наконец, проектируем двутавровое сечение.

    Подбор его размеров производится из условия прочности по нормальным напряжениям :

     2014-09-17 00-01-57 Скриншот экрана

    В сортаменте двутавровых профилей профиля с точно таким моментом сопротивления Wх нет. Есть № 40а с Wх=1190 см3 и № 45а с Wх=1430 см3

    Попробуем  меньший из них. Если принять двутавр № 40а, у которого Wх=1190 см3 , то наибольшее напряжение в опасном сечении будет:

    2014-09-17 00-03-07 Скриншот экранаи перенапряжение составит2014-09-17 00-04-00 Скриншот экраначто превышает рекомендуемую величину отклонения, равную 5%.

    Поэтому приходится принимать ближайший больший размер двутавра, а именно №45а, у которого Wх=1430 см3. В этом случае балка будет работать с недонапряжением:

    2014-09-17 00-07-06 Скриншот экраначто меньше [σ]=160МПа на  2014-09-17 00-08-04 Скриншот экрана

    Итак, принимается двутавр №45а, у которого: Wх=1430 см3, Iх=32240см4, Iх: Sх=38,6см, d=11,5мм.

    Далее необходима проверка прочности по касательным напряжениям с помощью условия прочности :

     

    2014-09-17 00-09-31 Скриншот экрана

    Это условие прочности выполняется, даже с избыточным запасом.

     

    Задача 5

    Подобрать сечение балки, рассмотрев шесть вариантов форм и три вида материалов (древесина, чугун, сталь).

    Решение 

    2014-09-17 22-31-27 Скриншот экрана

    1.Определение опорных реакций 

    М(А) = F · 2 + М1 М2q·6·7 + В · 8 =0,2014-09-17 22-32-56 Скриншот экранаМ(В) = F · 10 + М1М2А · 8 + q·6·1 =0,2014-09-17 22-33-50 Скриншот экранаПроверка:

    у = – 20 – 40 ·6 +50+210 = — 260 + 260 ≡ 0.

    2.Построение эпюр изгибающих моментов и поперечных сил.

    I участок

    2014-09-17 22-38-24 Скриншот экрана

    М(С) = М(z1) + F·z1=0,

    М(z1) = — F·z1= -20·z1.

    При z1=0:     М = 0,

            z1=2м:  М = – 40кНм,

    у= — FQ(z1) = 0,

    Q(z1) = — 20кН.

    II участок

    2014-09-17 22-40-24 Скриншот экрана2014-09-17 22-41-19 Скриншот экрана

            z2=0:      М = — 20 – 40 = -60 кНм,

    z2=4м:   М = 200 — 20 – 120 = 200 — 140 = 60кНм.

    у=- F + А Q(z2) = 0,

    Q =- F + А= -20+50=30кН.

    III участок

    2014-09-17 22-43-07 Скриншот экрана парабола.

    Приz3=0:      М = — 20·4= — 80 кНм,

    z3=2м:   М = 210·2 — 20·(2+2)2 = 420 – 320 = 100кНм,

    z3=4м:   М = 210·4 – 20 · (2+4)2 = 840 – 720 = 120кНм.

    у= Q(z3) + В q·(2+z3) = 0,

    Q(z3) = — В + q·(2+z3) = — 210 + 40·(2+z3) – уравнение прямой.

    Приz3 = 0:       Q = -130кН,

            z3 = 4м:     Q = 30кН.

    Q(z0) = — 210 + 40·(2+z0) = 0,

    — 210 + 80 + 40·z0 = 0,

    40·z0 = 130,

    z0 =3,25м,

    2014-09-17 22-44-56 Скриншот экрана

    IV участок

    2014-09-17 22-46-14 Скриншот экранапарабола.

    Приz4=0:      М = 0 кНм,

    z4=1м:   М = – 20кНм,

    z4=2м:   М = — 80кНм.

    у=- q·z4 + Q(z4) = 0,

    Q(z4) =q·z4 = 40·z4  – уравнение прямой,

            z4 = 0:        Q = 0,

            z4 = 2м:     Q = 80кН.

    3. Подбор сечений (опасное сечение по σ: |maxМ|=131,25кНм,

    опасное сечение по τ: |maxQ|=130кН).

    Вариант 1. Деревянное прямоугольное ([σ]=15МПа, [τ]=3МПа)

    2014-09-17 22-49-56 Скриншот экрана

    Принимаем: В=0,24м,

                             Н=0,48м.

    Проверяем по τ:

    2014-09-17 22-51-25 Скриншот экрана

    Вариант 2. Деревянное круглое

    2014-09-17 22-52-44 Скриншот экрана

    Принимаем d=0,45м,2014-09-17 22-53-42 Скриншот экрана

    Проверяем по τ:

    2014-09-17 22-54-31 Скриншот экрана

    Вариант 3. Чугун : ([σР]=30МПа, [σс]=120МПа, [τ]=15МПа)

    2014-09-17 22-56-00 Скриншот экрана

    Принимаем b=0,19м, тогда h=0,38м, d=0,076м.

    Проверка по τ:

    2014-09-17 22-57-04 Скриншот экрана

    b(у)= b — d= 0,19 — 0,076 = 0,114м

    2014-09-17 22-58-15 Скриншот экрана

    Вариант 4. Сталь, двутавр : ([σ]=160МПа, [τ]=80МПа).

    2014-09-17 23-02-55 Скриншот экрана 2014-09-17 23-05-31 Скриншот экрана

    по сортаменту Wх=953см3. Это №40: Ix=19062см4, Sх=545см3, d=0,83см.

    Проверка по τ:

    2014-09-17 23-07-46 Скриншот экрана

    Вариант 5. Сталь, круглая труба 2014-09-17 23-09-05 Скриншот экрана

    2014-09-17 23-10-12 Скриншот экрана

    Принимаем D=0,22м   →  d = 0,6·D =0,132м.

    Проверка по τ:

    2014-09-17 23-11-48 Скриншот экрана

    Вариант 6. Сталь, прямоугольная труба  2014-09-17 23-13-25 Скриншот экрана

    2014-09-17 23-14-10 Скриншот экрана

    b1= b — 2t = b — 2·0,1b = 0,8b,

    h1= h — 2= 0,8h,

    2014-09-17 23-15-24 Скриншот экрана

    Принимаем b=0,13м, h=0,26м.

    Проверка по τ:

    2014-09-17 23-17-20 Скриншот экрана

    Кстати: какое из сечений стальной балки выгодней по расходу материала?

    Двутавр —  А = 72,6см2 = 72,6·10-4 = 0,00726м2,

    круглая труба2014-09-17 23-19-04 Скриншот экрана

    прямоугольная труба — 2014-09-17 23-19-49 Скриншот экрана

    Самый лёгкий: двутавр → самый выгодный с точки зрения изгиба.

     

    prosopromat.ru

    Формулы для расчетов на изгиб

    σ — нормальные напряжения,
    τ — касательные напряжения,
    Qy – внутренняя поперечная сила,
    Mx – внутренний изгибающий момент,
    Ix – осевой момент инерции сечения балки,
    Wx – осевой момент сопротивления сечения,
    [σ], [τ] – соответствующие допустимые напряжения,
    E – модуль упругости I рода (модуль Юнга),
    y — расстояние от оси x до рассматриваемой точки сечения балки.

    Расчет внутренних поперечных сил и изгибающих моментов

    Формула кривизны балки в заданном сечении

    Расчет нормальных напряжений в произвольной точке сечения балки

    Условие прочности по нормальным напряжениям при изгибе (проверочный расчет)

    Осевые моменты инерции I и сопротивления W

    • прямоугольного сечения

      h – высота сечения,
      b – ширина сечения балки.
    • круглого сечения балки

      D — диаметр сечения

    Касательные напряжения в произвольной точке сечения определяются по формуле Журавского:

    Здесь:

    Sx* — статический момент относительно оси x отсеченной части сечения

    b — ширина сечения на уровне рассматриваемой точки

    Условие прочности балки по касательным напряжениям

    Дифференциальное уравнение линии изогнутой оси балки

    Уравнения метода начальных параметров (МНП)

    θz, yz — соответственно угол наклона и прогиб сечения балки на расстоянии z от начала координат,
    θ0, y0 — соответственно угол наклона и прогиб сечения балки в начале координат,
    m, F, q — соответственно все изгибающие моменты, сосредоточенные силы и распределенные нагрузки приложенные к балке,
    a, b — расстояние от начала координат до сечений где приложены моменты и силы соответственно,
    c — расстояние от начала координат до начала распределенной нагрузки q.

    Другие формулы >
    Примеры решения задач >
    Краткая теория >

    isopromat.ru

    Related Articles

    Кухня 7 м с колонкой и холодильником – ТОП-5 запоминающихся кухонь площадью 3,8 — 4.8 кв.м. с совершенно разной расстановкой мебели и техники Часть 1 | Какую кухню купить?

    Содержание Дизайн кухни 6 кв м с холодильником и газовой колонкой в хрущевке: 20 фотоКак скрыть газовую колонку на кухне?Спрятать в шкафМежду шкафамиЕсли колонка расположена низкоПрячем трубыГде найти место для холодильника?Как расположить газовую колонку и холодильник в одном дизайн-проекте?как спланировать гарнитур и мебельШесть эффективных решений для кухни 6 кв м1. Перепланировка2. Функциональный гарнитур3. Встроенная техника4. Компактная обеденная зона5. Правильная […]
    Читать далее

    Водоизоляционный ковер – Дополнительный водоизоляционный ковер — это… Что такое Дополнительный водоизоляционный ковер?

    Содержание Водоизоляционный коверУстройство оснований под пароизоляцию и водоизоляционный коверMicrosoft Word — Рук-во М 27.01-10 изм.1.docДополнительный водоизоляционный ковер — это… Что такое Дополнительный водоизоляционный ковер?Смотреть что такое «Дополнительный водоизоляционный ковер» в других словарях:основной водоизоляционный ковер — это… Что такое основной водоизоляционный ковер?Смотреть что такое «основной водоизоляционный ковер» в других словарях:Дополнительный водоизоляционный ковер — это… Что такое […]
    Читать далее

    Изоляция рулонная фольгированная: Рулонная фольгированная теплоизоляция цена в Москве, купить в Венторус

    Содержание Теплоизоляция фольгированная рулонная в Тобольске: 500-товаров: бесплатная доставка, скидка-38% [перейти]Рулонная фольгированная теплоизоляция Thermasheet Alu StuccoРулонная фольгированная теплоизоляция ENERGOFLEX SUPER AL 20/1,0-5(м²) Обзор фольгированной изоляции Reflectix Что такое изоляция Reflectix R-значения Reflectix Где использовать Reflectix Когда следует покупать Reflectix? Фольгированная изоляция | Изоляция из алюминиевой фольги Преимущества изоляции из алюминиевой фольги Когда устанавливать изоляцию из […]
    Читать далее

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Search for: