Мерифлютика что это: Ахинея,муть голубая,галиматья,мирифлютика,чушь собачья,бред сивой кобылы……Продолжите список? – Флуоресценция — это что такое?

    Содержание

    Флуоресцентные репортеры и их репортажи

    Е. О. Пучков,
    доктор биологических наук, Институт биохимии и физиологии микроорганизмов им. Г. К. Скрябина РАН
    «Химия и жизнь» №9, 2014

    Как известно, однажды свет был успешно отделен от тьмы. С тем, что такое тьма, еще предстоит разобраться: пока наметились лишь некоторые перспективы в связи с изучением темной материи и темной энергии. А вот свет человечество давно изучает и использует, в том числе и как исследовательский инструмент.

    В последние тридцать лет стремительно растет число методов исследования, основанных на регистрации флуоресценции, и они все шире применяются в биологии и медицине. Обусловлено это как развитием техники, в первую очередь компьютеров и лазеров, так и появлением широкого спектра доступных флуоресцирующих молекул и молекулярных комплексов, так называемых флуоресцентных репортеров. Флуоресцентная методология благодаря высокой чувствительности и сравнительной безопасности вытеснила многие традиционные методы, связанные с применением радиоактивных веществ. Методы флуоресцентного анализа используются как в фундаментальных исследованиях для получения новых знаний о живом, так и в прикладных работах — в биотехнологии, медицинской диагностике, криминалистике… Что же представляют собой флуоресцентные репортеры? Какую информацию из глубин микромира можно получить с их помощью? Как эту информацию регистрируют и анализируют? Но прежде всего — что такое флуоресценция?

    Флуоресценция: свечение, индуцированное светом

    Некоторые вещества после поглощения света в определенном диапазоне длин волн начинают излучать свет в другом, более длинноволновом диапазоне. Давно было замечено, что растворы некоторых органических соединений и минералов изменяют цвет, если наблюдать их не на просвет, а под углом к проходящему свету. Так, например, шотландский натуралист Дэвид Брюстер в 1833 году заметил, что от зеленого спиртового раствора хлорофилла при освещении белым светом «отражается» красный свет. Позднее, в 1845 году, знаменитый астроном и физик Джон Гершель описал появление голубой окраски у бесцветного раствора сульфата хинина при облучении солнечным светом. В 1852 году математик и физик Джордж Стокс обнаружил видимое глазом свечение минерала флуорита при его облучении невидимым ультрафиолетовым излучением. «В честь» флуорита он назвал это явление флуоресценцией, по аналогии с термином «опалесценция», описывающим явление дихроизма в опале. (Опалесценция — это разновидность дихроизма: рассеяние света, которое иногда сопровождается интерференцией. Хотя опалы тоже выглядят желтоватыми в проходящем свете и голубоватыми — в рассеянном, перпендикулярном к проходящему, это не флуоресценция.)

    Флуоресценция — один из видов люминесценции. Этим термином описывают все виды излучения, вызванного возбуждением молекул различными факторами. Так, например, в некоторых химических реакциях возникает хемилюминесценция. Хемилюминесценцию в биологических объектах называют биолюминесценцией. Есть вещества, которые испускают свет при возбуждении электрическим током (электролюминесценция), быстрыми электронами (катодолюминесценция), Y-излучением (радиолюминесценция) и другие. В этом контексте флуоресценция относится к категории фотолюминесценции.

    Способные флуоресцировать атомы, молекулы и молекулярные комплексы называют флуорофорами, или флуорохромами. Иногда флуорохромами называют все виды флуоресцирующих молекул, а флуорофорами — только флуоресцирующие компоненты (группировки) крупной молекулы. Однако дальше мы будем использовать термин «флуорофор» для всех типов флуоресцирующих веществ. Отметим также, что в исследовательской практике ковалентно присоединенный к макромолекуле флуоресцирующий компонент принято называть флуоресцентной меткой, а свободный флуорофор — зондом. Применяемые в микроскопии флуорофоры традиционно именуют

    флуоресцентными красителями. Наконец, флуорофоры, используемые в биологических исследованиях, некоторые авторы стали называть биосенсорами. Физическую природу флуоресценции удобно проиллюстрировать, пользуясь диаграммой, которую предложил польский физик Александр Яблонский в 1933 году и которая носит его имя (рис. 1).

    Отметим три важных обстоятельства. Во-первых, вероятности переходов, показанных на рис. 1, различаются. О вероятности можно судить по времени, за которое осуществляется каждый из переходов, или по времени пребывания электронов в каждом из этих состояний (см. таблицу): чем меньше время, тем более вероятен данный переход. Очевидно, что флуоресценция и тем более фосфоресценция — маловероятные процессы. Вот почему большинство флуорофоров светятся слабо даже при интенсивном облучении. Во-вторых, поскольку флуоресценция возможна при переходе электронов в основное состояние только с самого низкого синглетного уровня, энергия излучения меньше поглощенной энергии. Поэтому спектр флуоресценции флуорофора всегда находится в более длинноволновой области по сравнению со спектром поглощения. И наконец, в-третьих, состояние электронов, участвующих в процессах, зависит как от физических факторов окружающей среды, так и от общей электронной конфигурации молекулы. Именно это обстоятельство и делает флуорохром

    молекулярным репортером, который на языке флуоресценции сообщает о физико-химических условиях своего окружения. Молекулярный репортер, в отличие от газетного репортёра, произносится с ударением на второй слог. Но задачи перед ними стоят сходные: проникнуть туда, куда поручили, и отправить репортаж с места событий.

    Времена потенциальных переходов электронов между разными энергетическими состояниями в флуорофорах

    ПереходВременной интервалУчастие светового излучения
    Поглощение10–15 с+
    Внутренняя конверсия
    10–14–10–11 с
    Вибрационная релаксация10–14–10–11 с
    Флуоресценция10–9–10–7 с+
    Интеркомбинационная конверсия10–8–10–3 с
    Фосфоресценция10–4–10–1 с+

    Язык флуоресцентных репортеров

    Рис. 2. Спектры поглощения (пунктир) и флуоресценции (сплошные линии) флуоресцеина и вещества с коммерческим названием Lyso TrackerTM Blue («Molecular Probes»). Изображение с сайта www.lifetechnologies.com
    Рис. 2. Спектры поглощения (пунктир) и флуоресценции (сплошные линии) флуоресцеина и вещества с коммерческим названием Lyso TrackerTM Blue («Molecular Probes»). Изображение с сайта www.lifetechnologies.com

    Итак, параметры флуоресценции — язык, с помощью которого флуоресцентный репортер передает информацию. Если продолжить аналогию, то параметры подобно словам приобретают смысл только в контексте, иначе говоря, с учетом условий регистрации. У каждого флуорофора имеется пять ключевых характеристик: спектры поглощения и флуоресценции, а также квантовый выход, время жизни и анизотропия флуоресценции.

    Спектры поглощения и флуоресценции показывают, свет с какими длинами волн преимущественно поглощает и излучает данное вещество (рис. 2). Основные параметры спектра — интенсивность флуоресценции, положение максимума и так называемая полуширина (ширина спектра на уровне половины максимума). Можно считать, что максимум спектра флуоресценции — это ее цвет, например, если максимум около 540 нм, это означает, что свечение в данных условиях будет зеленым. Оговорка про условия не случайна. Часто именно эти параметры информируют наблюдателя о свойствах окружения, в котором находится репортер. Так, в спектре флуоресценции многих флуорохромов возникают характерные изменения при сдвиге рН среды. Если такие изменения могут быть вызваны только изменениями кислотности и ничем иным, то флуорофор может быть своего рода молекулярным рН-метром — рН-репортером. Характерный пример — Lyso Sensor

    TM Yellow/Blue, чьи спектры показаны на рис. 3.

    Рис. 3. Спектры флуоресценции Lyso SensorTM Yellow/Blue («Molecular Probes») при рН 3 и 9. При изменении кислотности среды меняются и максимум флуоресценции, и общая форма спектра. Изображение с сайта www.lifetechnologies.com
    Рис. 2. Спектры поглощения (пунктир) и флуоресценции (сплошные линии) флуоресцеина и вещества с коммерческим названием Lyso TrackerTM Blue («Molecular Probes»). Изображение с сайта www.lifetechnologies.com

    Квантовый выход флуоресценции — это характеристика эффективности, с которой поглощенная энергия трансформируется в излучение по сравнению с процессами безызлучательной релаксации. Количественно он определяется как отношение числа высвеченных фотонов к числу поглощенных. Чем больше квантовый выход, тем больше интенсивность свечения флуорофора. Флуоресцентный репортер часто выбирают именно по этому показателю. Например, флуоресцеин с квантовым выходом около 0,9 (почти единица!) широко применяют как в роли самостоятельного зонда, так и в качестве флуоресцентной метки нефлуоресцирующих молекул. Важно также и то, что этот показатель очень чувствителен к физико-химическим взаимодействиям репортера.

    Время жизни флуоресценции — усредненное время, в течение которого молекулы флуорофоров находятся в возбужденном состоянии перед испусканием фотонов. Измеряют этот показатель по затуханию флуоресценции после кратковременного возбуждения. Время жизни флуоресценции, с одной стороны, очень чувствительно к физико-химической «обстановке», в которой находится репортер. С другой стороны, у каждого флуорофора это время свое, что позволяет получать репортажи из одного образца от флуоресцирующих молекул с похожими спектральными характеристиками. Приходя в разное время, сигналы не перекрываются.

    Наконец, анизотропия флуоресценции — количественная характеристика зависимости поляризации флуоресценции от поляризации возбуждающего света. По анизотропии можно судить о вращательной подвижности репортера и тем самым о вязкости среды в его микроокружении.

    Но информационные возможности флуоресцентных репортеров этим не ограничиваются. Так, например, существует явление безызлучательной, или резонансной, передачи энергии (БПЭ) от одного флуорофора на другой. При этом интенсивность флуоресценции у донора энергии уменьшается, а у акцептора возрастает. Передача возможна между флуорофорами с определенными спектральными свойствами — и, что особенно важно, находящимися на достаточно близком расстоянии. Это позволяет выявлять взаимодействие молекул и даже оценивать расстояние между ними. Вот почему БПЭ иногда называют «молекулярной линейкой».

    Интересные возможности исследователям предоставляет тушение флуоресценции при физическом взаимодействии флуорофора с молекулами-тушителями, такими, как кислород, галогены, амины, некоторые электрондефицитные органические молекулы. В этом случае флуоресцентный репортер сообщает о присутствии в его окружении определенных тушителей.

    Тушение флуорофора может происходить также за счет фотообесцвечивания под влиянием излучения большой интенсивности. Обычно это явление мешает экспериментатору, но в умелых руках может стать специальным методическим приемом. Так, наблюдение за восстановлением флуоресценции флуорофора после фотообесцвечивания дает информацию о вязкости и диффузионных свойств цитоплазмы. В небольшом участке клетки, содержащей флуорофор, его обесцвечивают кратковременной мощной вспышкой лазера, а затем наблюдают, как флуоресценция восстанавливается за счет диффузии необесцвеченных молекул из других участков клетки.

    Какие они, флуоресцентные репортеры?

    Условно можно выделить две группы репортеров, созданных на основе органических и неорганических флуорофоров.

    Органические флуорофоры наиболее многочисленны и разнообразны. Как велико это разнообразие, можно представить, заглянув в каталог фирмы «Molecular Probes», специализирующейся на разработке и производстве флуорофоров c 1975 года. На момент написания статьи по ссылке было уже одиннадцатое обновление каталога: темпы роста в этой области впечатляют.

    У каждого репортера — своя специализация: достоинства и возможности каждого определяют круг задач, для решения которых его применяют. Проиллюстрируем это на примере флуоресцеина и его производных (рис. 4). Как уже отмечалось, этот флуорофор имеет высокий квантовый выход и соответственно яркую флуоресценцию. Он может быть репортером рН, однако для измерения рН внутри клеток он не подходит, так как не проникает через цитоплазматическую мембрану. Зато мембрану может преодолеть его гидрофобное производное — флуоресцеиндиацетат. Правда, ацетильные группы лишают его возможности флуоресцировать, но внутри клетки их отщепляют ферменты эстеразы. Аналогичным образом (в форме диацетата) доставляется в клетки дихлорфлуоресцеин, который служит для регистрации в клетках активных форм кислорода. Если присоединить к молекуле флуоресцеина изотиоцианатную группу, такой флуорохром будет связываться с аминогруппами нефлуоресцирующих молекул. Таким образом делают флуоресцирующие антитела, стрептавидин (реагент на биотин), а также нуклеотиды и олигонуклеотиды. Наконец, 5-карбоксиметокси-2-нитробензиловый эфир флуоресцеина (не показан на рис. 4) сам не флуоресцирует, но превращается в обычный флуоресцеин при облучении светом с длиной волны 355 нм.

    <b>Рис. 4.</b> Структурные формулы флуоресцеина и некоторых его производных

    В 70-х годах ХХ века при изучении биолюминесценции медузы Aequorea victoria были выделены два белка, участвующих в этом процессе. Они всем известны с тех пор, как Нобелевскую премию по химии 2008 года получили их открыватели и создатели исследовательских инструментов на их основе — Осаму Шимомура, Мартин Челфи и Роджер Тсиен (см. «Химию и жизнь», 2008, №12), Один из этих белков, экворин, в присутствии ионов кальция окисляет свою простетическую группу, причем возникает хемилюминесценция голубого цвета; второй белок поглощает голубой свет и флуоресцирует зеленым.

    Этому второму белку, названному просто green fluorescent protein (зеленый флуоресцентный белок — GFP, или ЗФБ), суждена была громкая слава. После открытия GFP начались интенсивные исследования его структуры, был клонирован его ген. Оказалось, что этот ген сравнительно несложно экспрессировать в клетках других организмов. Можно также соединить его с геном другого белка и внедрить этот гибридный ген в клетку — тогда она начнет синтезировать белок с флуоресцентной меткой. Позднее у некоторых морских беспозвоночных (кораллов и полипов) обнаружили аналогичные белки с другими спектрами флуоресценции. Методы молекулярной биологии позволили сконструировать гены, кодирующие модифицированные формы флуоресцентных белков с широким диапазоном спектральных характеристик, а также фоторегулируемые варианты, свечение которых можно включать и выключать с помощью ультрафиолетового излучения. Сегодня к услугам исследователей на основе GFP созданы флуоресцентные белки всех цветов радуги, с самыми разнообразными свойствами, и постоянно появляются новые.

    Несколько скромнее пока выглядит судьба экворина. Изучение зависимости его хемилюминесценции от ионов кальция позволило разработать методики измерения концентрации Ca2+ в некоторых клетках. Для этого существуют и флуоресцентные репортеры, однако хемилюминесцентный метод с использованием экворина не требует облучения, возбуждающего флуоресценцию, которое не всегда безвредно для биологической системы. Экворин относят к сравнительно большой группе люциферинов — веществ, ответственных за био(хеми)люминесценцию у некоторых морских и наземных организмов. Они интересны не только с точки зрения их практического применения: ведь до сих пор идут споры о том, зачем биологическим объектам вообще нужна биолюминесценция.

    Неорганические флуорофоры чаще всего используют в составе так называемых биоконъюгатов — комплексов с органическими соединениями или биомолекулами. Многие атомы, например, переходные металлы, лантаниды (точнее, их ионы, например Tb3+ и Eu3), кластеры из нескольких атомов золота и серебра, в составе таких комплексов приобретают способность к сенсибилизированной флуоресценции. Энергия света, поглощенного органическим соединением, передается на атом неорганического элемента, который и излучает флуоресценцию. Важно то, что молекулы — доноры энергии передают ее от электронов, находящихся в триплетном состоянии. Поэтому излучение неорганических флуорофоров в таком комплексе замедленно по сравнению с обычной флуоресценцией, поскольку время жизни электронов в триплетном состоянии заметно больше, чем в синглетном (см. таблицу 1). Кроме того, спектры флуоресценции неорганических биоконъюгатов имеют небольшую ширину и сильно сдвинуты относительно спектров поглощения. Благодаря этому неорганические био-конъюгаты можно использовать и тогда, когда в исследуемой системе присутствуют другие компоненты, флуоресцирующие в том же диапазоне длин волн.

    Особое место в этой группе занимают репортеры-биоконъюгаты, в которых в качестве флуорофора используются полупроводниковые кристаллы размером 2–10 нм (нанокристаллы), получившие название квантовых точек — quantum dots. Как правило, они состоят из пары элементов III/V (например, CdS, CdSe, ZnS) или II/VI групп (например, GaN, InP, InAs). Из-за малых размеров полупроводниковых кристаллов (в них всего по 10–50 атомов!) для электронов создаются условия квантованных энергетических переходов, подобных тем, что существуют в отдельных атомах. (Квантовые точки иногда даже называют «искусственными атомами».) При этом энергия переходов, а тем самым и длина волны флуоресценции зависят от размера кристалла. Чем меньше кристалл, тем больше энергия излучения, то есть меньше длина волны флуоресценции (см. фото на первой врезке). Это свойство открывает возможность создания квантовых точек практически с любой спектральной конфигурацией. Добавим, что по сравнению с органическими флуорофорами они обладают более высоким квантовым выходом и фотостабильностью. На рис. 5 показаны примерные размеры различных флуорофоров-репортеров.

    Биоконъюгаты на основе квантовых точек состоят из ядра (например, CdSe), которое покрыто слоем полупроводникового материала (например, ZnS), выполняющим защитную функцию, и лиганда — какого-нибудь органического вещества, обеспечивающего растворимость и/или присоединение биологических молекул. Биоорганическая оболочка обеспечивает стабильность биоконъюгата как коллоидной частицы и формирует задание репортера, его назначение: где и с чем провзаимодействовать, какую собрать и передать информацию. При этом, конечно, размеры репортера на основе квантовой точки могут существенно увеличиться (рис. 5). В биоорганическую оболочку включают и низкомолекулярные соединения, такие, как биотин, и высокомолекулярные — одноцепочечные фрагменты ДНК, белки, в том числе ферменты или антитела (IgG).

    <b>Рис. 5. </b>Относительные размеры флуоресцентных репортеров. Для сравнения показан также белок иммуноглобулин G (Ig G) — иначе говоря, молекула-антитело

    Как читают флуоресцентные репортажи…

    Первым в списке инструментов для получения и анализа сообщений флуоресцентных репортеров был человеческий глаз. Флуоресцентное свечение макроскопических объектов мы наблюдаем непосредственно, а микроскопических — с помощью флуоресцентного (люминесцентного) микроскопа. Примерами макроскопических объектов могут служить колонии микроорганизмов, в которых экспрессированы флуоресцентные белки, или хроматограммы и электрофореграммы с применением флуоресцентных красителей. В обычный флуоресцентный микроскоп (о необычных микроскопах — см. врез ниже), как правило, заглядывают для выявления иммунологических реакций с использованием меченных флуорофорами антител, применяют их и в некоторых исследованиях на уровне единичных клеток.

    Особо отметим эстетическую информативность этих методов. Флуоресцентные репортеры на микрофотографиях открывают нам чарующий мир разнообразных цветов и форм (см. фото на второй странице обложки). Фирмы-производители микроскопов «Nikon» и «Olympus» даже проводят ежегодные конкурсы фоторабот о микромире в свете флуоресценции (работы-победители см. на сайтах The Olympus BioScapes Competition и Nikon’s Small World.

    В отличие от флуоресцентных микроскопов, проточные цитометры не дают возможности полюбоваться флуоресцирующими объектами. Их сильная сторона — скорость регистрации сигналов от единичных объектов, например от клеток в суспензии. Обычный коммерчески доступный цитометр работает со скоростью 1000 клеток в секунду, а специализированные высокопроизводительные — до 25 000 клеток в секунду! В стандартном варианте у каждого объекта измеряются от двух до десяти параметров: светорассеяния и флуоресценции одного или нескольких флуорофоров. Таким образом можно получить статистически достоверные результаты по гетерогенности клеточных, в частности микробных, популяций. Существуют также приборы, способные сортировать клетки по определенным параметрам светорассеяния или флуоресценции, чтобы затем изучать субпопуляции с использованием других методов.

    …И что из них можно узнать

    Итак, все флуоресцентные репортеры имеют специализацию, то есть способны избирательно характеризовать определенные свойства биологической системы. Остановимся вкратце на некоторых категориях «специалистов».

    С помощью ряда флуоресцентных репортеров (как правило, органических флуорофоров) можно следить за ферментативным катализом — исследовать динамику ферментативных реакций, их локализацию в клетках, тканях, органах и т. п. Это, например, субстраты с ковалентно присоединенными флуорофорами, которые начинают флуоресцировать только после высвобождения в ходе реакции, или «профлуорофоры», становящиеся флуоресцентными при взаимодействии с продуктом реакции.

    Репортеры, сформированные на основе антител — физические комплексы или ковалентные соединения флуорофоров с антителами, — информируют о протекании иммунологических реакций. Флуоресцирующим компонентом может быть любой из известных органических и неорганических флуорофоров, включая квантовые точки. Кроме того, к антителам можно присоединять ферменты, катализирующие реакции с образованием флуоресцирующего продукта. Современные технологии позволяют получить антитела к любому белку (антигену), интересующему исследователя, антитело же с флуоресцентной меткой заставит светиться этот белок или структуру, из него построенную. Например, с помощью флуоресцентных антител выявлены микрофибриллы в фибробластах мышей (см. фото на второй странице обложки).

    Очень информативны методы с использованием флуоресцентных белков (ФБ). Мы уже упоминали о том, как полезны методы внедрения в клетку генов гибридных белков, которые заставляют флуоресцировать естественный белок или даже нуклеиновую кислоту. Вдобавок флуоресценция ФБ-содержащих гибридных белков зависит от кислотности среды, что позволяет измерять рН не только внутри клетки, но и внутри отдельных органелл, если такой белок «адресован» в ядро или митохондрию.

    Особый интерес вызывает применение ФБ в сочетании с методиками измерения флуоресценции, основанными на безызлучательной передаче энергии. Представьте себе два гибридных белка, один из которых заставляет флуоресцировать другой при сближении. Подобным же образом можно изучать конформационные (структурные) изменения в белках, если присоединить ФБ к разным участкам одной белковой молекулы.

    Чувствительность флуоресценции к физическим свойствам микроокружения флуорофоров позволяет использовать некоторых из них в качестве репортеров различных параметров внутриклеточной среды. В их числе, например, вязкость цитоплазмы, внутреннего содержимого органелл, гидрофобного слоя биомембран. Взаимодействие некоторых флуорофоров с биологическими мембранами зависит от разности электрических потенциалов на мембране: с помощью таких репортеров получают сведения о величине мембранного потенциала. Существуют даже репортеры для измерения внутриклеточной температуры!

    Что высветили в микромире флуоресцентные репортеры

    Флуоресцентные репортеры долго и успешно служат во многих, если не во всех областях экспериментальной биологии. Однако есть такие области, где они сыграли ключевую роль.

    С использованием флуоресцентных репортеров была экспериментально доказана модель жидкокристаллической структуры всех биологических мембран. Согласно этой модели, при всей ее структурной целостности мембрана достаточно «жидкая», чтобы отдельные ее компоненты могли перемещаться в нужные стороны. Такое представление позволяет понять основные молекулярные механизмы функционирования мембран, а также свойства живых клеток в целом.

    В значительной мере благодаря информации от флуоресцентных репортеров прояснились механизмы трансформации энергии в клетках. Особую роль здесь сыграли флуорофоры, позволяющие регистрировать внутриклеточный и внутримитохондриальный рН, а также разность электрических потенциалов на мембранах. С их помощью прежде всего был выявлен механизм сопряжения энергодонорных реакций окисления с энергозатратным синтезом аденозинтрифосфата (АТФ) — универсального поставщика энергии для большинства метаболических процессов. Кроме того, была изучена природа накопления различных веществ в цитоплазме и в клеточных органеллах за счет мембранного электрического потенциала и градиента рН.

    Жизнедеятельность клеток обеспечивается совокупностью скоординированных в пространстве и времени биохимических реакций, а за координацию отвечают так называемые сигнальные системы. Основные компоненты этих систем были изолированы и охарактеризованы с помощью методов традиционной биохимии и молекулярной биологии. Однако только подходы, основанные на применении флуоресцентных репортеров, показали напрямую, где пролегают эти пути и как по ним проходят сигналы, — стало возможным в реальном времени следить за взаимодействиями сигнальных белков или оценивать динамику экспрессии генов в отдельно взятой клетке. С помощью флуоресцентных репортеров удалось обнаружить и неизвестные ранее сигнальные компоненты, например выявить роль ионов Са+2 как сигнального посредника во многих регуляторных реакциях.

    Во второй половине ХХ века в микробиологии возникла проблема, которую окрестили «великой аномалией учета микроорганизмов с помощью чашек Петри». «Виновниками» оказались флуоресцентные репортеры, два красителя нуклеиновых кислот — акридиновый оранжевый и 4,6-диамидино-2-фенилиндол. Оценить содержание микроорганизмов в природном образце можно, либо подсчитывая колонии, выросшие на чашке Петри (при достаточном разведении «посевного материала» каждую колонию образуют потомки лишь одной клетки), либо напрямую подсчитывая под микроскопом сами микроорганизмы, прокрашенные флуоресцентными красителями нуклеиновых кислот. Так вот, флуоресцентные репортеры всегда выявляли значительно больше микроорганизмов, чем анализ с чашками Петри.

    Для объяснения этого противоречия были выдвинуты две гипотезы. Согласно первой, часть клеток, находящихся в состоянии покоя, не размножается на чашках Петри. Согласно второй, условия культивирования (состав среды, температура и др.) не соответствуют потребностям некоторой части популяции. Проверка этих гипотез показала, что возможно и то, и другое. Более того, был дан толчок к формированию двух новых больших направлений исследований. Первое связано с изучением так называемого жизнеспособного, но некультивируемого состояния микроорганизмов. Понятна практическая значимость таких исследований: например, патогены человека в этом состоянии могут быть невидимы для стандартных методов диагностики и более устойчивы к лекарственным препаратам. Второе направление — выявление и изучение микроорганизмов в природных образцах путем прямого анализа их нуклеиновых кислот, без предварительного получения чистых культур, как это делалось раньше. Это направление получило собственное название — метагеномика. Благодаря методам метагеномики (кстати, некоторые из этих методов предполагают использование флуоресцентных репортеров) появилась возможность по-новому увидеть биологическое разнообразие микроорганизмов в отдельных экосистемах и на Земле в целом.

    Итак, современные флуоресцентные репортеры — это огромная армия специалистов, и многие из них уже имеют громкую славу в экспериментальной биологии. Их репортажи позволили лучше разглядеть те уголки микромира, куда может заглянуть свет. Однако многие исследователи, работающие в данной области, считают, что все, увиденное нами в свете флуоресценции до сих пор, — это только начало!

    Ответы@Mail.Ru: Объясните доступные языком — Что такое флуоресцентные лампы?

    Лампы, в которых внутренняя стенка покрыта специальным порошком — люминофором. Он и светится. Это как раз белые лампы-трубки, которые в офисах стоят.

    Светится не газ а покрытие внутри лампы

    Проще простого это лампы дневного цвета, т. е. неоновые

    Газоразрядные = ртутные = лампы дневного света

    Флуоресцентная (точнее, люминесцентная) лампа — лампа, в которой основным источником света является разряд в ионизированном газе или парах металла (например, ртути, натрия) , а дополнительным — люминесценция нанесённого на внутренние стенки лампы люминофора.

    Они потребляют примерно в 5 раз меньше мощности…. в них газ.. . от 5 до 15 раз служат дольше чем лампы накаливания …дорогие нельзя регулировать свет.. энергосберегающие

    Доступным языком — это лампы дневного сета (сейчас ещё называют ЭКОНОМ) и, как сказала Лариска в них действительно пары ртути или газ!!!

    Разновидность люминисцентных ламп <a rel=»nofollow» href=»/» title=»4305604:##:http://www.terraria.ru/lamp10″ target=»_blank» >[ссылка заблокирована по решению администрации проекта]</a> и <a rel=»nofollow» href=»http://www.grandelectro.ru/catalog/orbitec/neon_lamp» target=»_blank»>http://www.grandelectro.ru/catalog/orbitec/neon_lamp</a>

    Флуоресцентные лампы(люминесцентные). Виды и устройство.Работа

    В современный период флуоресцентные лампы получили широкое применение среди других видов осветительных ламп. Уже в 70-х годах они начали заменять обычные лампы накаливания на производстве и в различных учреждениях. Они имеют достаточно высокую эффективность, качественно освещают помещения и территории.

    Флуоресцентная лампа – это источник света, получаемого от свечения разрядов газа. Она состоит из стеклянной трубки, на внутренней поверхности которой нанесен слой люминофора. На торцах трубки находятся электроды в виде спиралей. В полость трубки закачан инертный газ и пары ртути. Под напряжением на электродах в лампе образуется разряд газа, ток проходит по парам ртути, возникает свечение.

    Технология изготовления этих ламп постоянно совершенствуется, уменьшаются размеры, повышается яркость и качество света. С 2000-х годов такие лампы используются в домашнем хозяйстве. В настоящее время лампы получили название люминесцентных. По сути и принципу действия это одни и те же лампы. Хотя старое название также используется, поэтому в разной литературе они называются по-разному.

    Типы флуоресцентных ламп и их устройство

    У нас в стране энергосберегающими лампами называют (люминесцентные) флуоресцентные лампы для бытового применения. Многие не знают, что лампы в виде спирали, которые используются в быту, и называются энергосберегающими, являются по принципу действия флуоресцентными лампами. Энергоэффективность приборов освещения делится на два класса: А и В.

    Наиболее правильной будет классифицировать флуоресцентные лампы по различным признакам. Учитывая технологию производства и область применения, выделяют следующие типы ламп:
    • Стандартные флуоресцентные лампы диаметром 26 мм, имеющие несколько слоев люминофора.
    • Флуоресцентные лампы компактных размеров, имеющие трубку различной конфигурации, также покрытой люминофором.
    • Лампы специального назначения.
    Также флуоресцентные лампы делятся по другим признакам:
    • Мощность энергии потребления.
    • Световой поток.
    • Цветовая температура.
    • Индекс цветопередачи.
    • Длина лампы.
    • Размер цоколя.
    • Вид подключения.
    • Размещение пускателя. Размещается в корпусе лампы или в светильнике.

    Основным элементом флуоресцентных ламп являются пары ртути в малой концентрации. При прохождении через них электрического тока образуется ультрафиолетовое излучение. Люминофор – это химическое вещество, находящееся на внутренней поверхности трубки лампы, преобразующее ультрафиолетовое излучение в видимый для глаз свет. Качество света зависит от состава люминофора.

    Принцип действия

    При включении питания в стартере образуется небольшой тлеющий разряд, под действием него нагреваются электроды.

    Один из электродов изготовлен из биметаллического материала. При нагревании он изгибается и прикасается к другому электроду. В итоге в цепи резко увеличивается электрический ток, разряд в стартере прекращается. Повышающийся ток нагревает электроды флуоресцентной лампы. они начинают выпускать электроны. Это является подготовкой к запуску работы лампы.

    Электроды в стартере в это время охлаждаются, биметаллический элемент выправляется, и между электродами появляется зазор. Сила тока в схеме значительно снижается. В дросселе появляется мгновенное повышенное напряжение, которое называется напряжением самоиндукции. Оно препятствует снижению этого тока. При суммировании с напряжением цепи, напряжение самоиндукции образует в лампе короткий импульс напряжения, которого хватает для образования электроразряда в газе.

    Сначала разряд возникает в аргоне, а затем, когда газ разогреется, в ртутных парах. Во время свечения лампы напряжение на электродах, а значит и электродах стартера, подключенного к лампе по параллельной схеме, меньше напряжения цепи на размер ЭДС самоиндукции, появляющейся в дросселе при загорании лампы.

    Поэтому, дроссель предназначен не только для запуска люминесцентной лампы, но и в создании препятствия неограниченного повышения тока разряда. Если бы дросселя не было, то при увеличении тока лампа разрушилась бы, либо вышли из строя предохранители сети питания квартиры.

    Конденсатор С1 в схеме стартера предназначен для подавления помех радиочастотных волн. А емкость С2 служит для увеличения коэффициента мощности.

    Особенности и преимущества флуоресцентных ламп

    Ультрафиолетовое излучение заставляет светиться люминофор видимым для глаза человека светом. Стекло колбы лампы не дает выхода вредному ультрафиолетовому излучению. Этим оно защищает наши глаза.

    Бактерицидные лампы имеют в своей конструкции кварцевое стекло, которое легко пропускает ультрафиолет. Такие лампы применяются для дезинфекции и кварцевания помещений в медицине. Большое распространение имеют сегодня лампы с амальгамами кадмия и другими элементами. В них давление ртути снижено, вследствие чего расширяется интервал температур отдачи света до 60 градусов. Для чистой ртути эта величина составляет 25 градусов.

    При возрастании температуры воздуха больше 25 градусов, температура стенок лампы и давление паров ртути повышается, а поток света снижается. Еще сильнее уменьшается поток света при снижении температуры и давления паров. При этом запуск ламп затрудняется. Поэтому в холодное время применение флуоресцентных ламп ограничено.

    Чтобы решить эту проблему, разработана конструкция безртутных люминесцентных ламп, в которых давление инертного газа низкое. В них слой люминофора начинает светиться от излучения с величиной длины волны 58-147 нанометров. Так как давление газа в таких лампах не зависит от температуры воздуха, то поток света не изменяется. Сегодня существуют лампы нового поколения Т5. Они более компактны, в них используется высокочастотный пускатель.

    Чем больше длина лампы, тем сильнее поток света. Это происходит из-за уменьшения анодно-катодных потер в потоке света. Поэтому выгоднее применить одну лампочку на 36 ватт, чем 2 лампы по 18 ватт. Срок действия у таких ламп ограничивается распылением катодов. Также снижают срок службы колебания напряжения сети питания и частые переключения.

    Достоинства

    Флуоресцентные лампы нашли широкое применение в связи с тем, что они обладают значительными достоинствами, по сравнению с простыми лампочками накаливания.

    • Повышенная эффективность. Световая отдача выше в 10 раз, чем у ламп накаливания, КПД 25% по сравнению с лампами накаливания – 7%.
    • Большой срок работы – до 20000 часов.
    Недостатки
    • Требуется подключение балласта для нормальной работы лампы.
    • Устойчивая работа лампы зависит от температуры воздуха.

    Излучение света оказывает на людей значительное воздействие, как психологическое, так и физиологическое, но чаще благотворное. Самым полезным считается дневной свет. Он оказывает влияние на процессы жизни человека, обмен веществ, развитие в физическом плане и т.д. Искусственное освещение отличается от дневного света. Лампы накаливания излучают желтый и красный спектр света, ультрафиолет отсутствует, поэтому они считаются теплыми источниками света.

    Еще одним достоинством люминесцентных ламп является возможность образования света разного спектра, от теплого до дневного. Это делает богаче цветовую палитру домашнего быта. Для разных областей применения рекомендуют свои цвета.

    Как изготавливают флуоресцентные лампы

    Эта лампа была изобретена в 1909 году. До сих пор ее конструкция принципиально не изменилась. Их изготовление является сложным процессом. Нужна механическая хореография, которая включает в себя сварку, и плавку, а также изгибы, пайка, окраска.

    Технологический процесс начинается с трубок из стекла. До этого их тщательно подвергают промывке в теплой воде для удаления примесей и грязи. Далее трубкам придается специфическая форма. Их подвергают нагреву в течение половины минуты, потом быстро сгибают по шаблону. Автоматический станок изгибает трубки со скоростью 14 штук в минуту.

    Изогнутые трубки идут в камеру, в которой наносится небольшой слой фосфора на внутреннюю поверхность. Фосфор образует световой поток, преобразуя ультрафиолет, образующийся во время ионизации паров ртути. С краев трубки убирают излишки фосфора, для последующей пайки.

    Теперь нужно установить компоненты электросхемы. Монтажным автоматом изготавливается катодное устройство. По ним будет поступать ток. Проводникам придается нужная форма, затем их нагревают до определенного значения температуры. Это является подготовкой к следующему этапу, потому что важно не дать катодному покрытию перейти на штырьки.

    Нити лампы вставляют в опору. Эмиссионное вещество в этом процессе имеет большое значение. Она испускает электроны, участвующие в образовании светового потока. На следующем этапе соединяют подставку и стеклянную трубку. Пайка производится при высокой температуре.

    Теперь остается самый важный процесс, во время которого выкачивают воздух из трубки и заполняют ее инертным газом. На этой же операции в трубку впрыскивается капля ртути, которая очень важна для образования света.

    Следующий этап – это размещение проводов, чтобы установить крышку, закрывающую трубку. Крышка создает электрический контакт, и надевается на конец трубки. Она должна иметь абсолютную герметичность, чтобы не было утечки. Теперь лампа готова.

    Каждый образец лампы ставят на испытательное колесо для проверки качества.

    После тщательной проверки флуоресцентные лампы перевозят на упаковку. Эта операция требует необходимой точности и ловкости. С помощью фосфора, ртути и паяльных ламп изготавливается устройство, не изменившееся за последний век.

    Похожие темы:

    Флуоресцентные канцелярские товары: маркеры, ручки, карандаши, фломастеры и чернила

    Посмотрите наш каталог и узнайте, как сделать все своими руками!
    Читайте другие статьи о светящемся бизнесе на нашем сайте.

    Сегодня на рынке можно встретить большое разнообразие всевозможных канцелярских товаров, среди которых многие обладают эффектом свечения. Люминофорные карандаши и маркеры могут светиться в темноте без дополнительных источников света благодаря своей уникальной способности накапливать световую энергию, а затем излучать ее, флуоресцентные карандаши наоборот, отличаются тем, что могут светиться под воздействием ультрафиолетовых лучей.

    Флуоресцентный маркер изготавливают на водяной основе, что дает ему возможность наноситься практически на любую поверхность, будь то металл, пластик, стекло или что-либо еще. Он является экологически чистым нетоксичным продуктом. Купить флуоресцентный маркер можно для дальнейшего использования при нанесении «временных тату». Такие тату очень привлекательно смотрятся в ультрафиолетовом освещении. Удалить сделанный флуоресцентным маркером рисунок можно с помощью обычного мыла.

    Флуоресцентные маркеры часто используются для оформления декораций или меню в различных заведениях. Им можно писать различные объявления на рекламных досках, чтобы стереть подобные надписи можно использовать обычные влажные салфетки. Сделанные маркером надписи при дневном свете имеют насыщенный яркий оттенок, а при ультрафиолетовом ночном освещении очень эффектно светятся.

    Известная фирма Moleskine не осталась в стороне от тенденции выпуска светящейся продукции и создала собственную коллекцию Moleskine Writing, которая состоит из флуоресцентных карандашей хайлайтеров для выделения текста. Продаются они в двух цветах: зеленом и оранжевом. Эти два ярких флуоресцентных карандаша отлично подходят как для подчеркивания главного в тексте, так и для рисования. Грифель этих карандашей имеет высокую прочность, они не ломаются при заточке.

    Флуоресцентные карандаши имеют прямоугольное сечение, как и старинные столярные карандаши. К набору предлагаются 24 декоративные мини-наклейки. Такой набор, безусловно, сможет стать незаменимым помощником в работе и творчестве.

    Кроме флуоресцентных маркеров и карандашей в продаже также можно встретить флуоресцентные фломастеры, которые отлично подойдут для творческих занятий с детьми. Детям очень нравятся яркие цвета, которыми и отличаются фломастеры, а если они еще и могут светиться в темноте, то это будет неоценимым плюсом. Также в продаже можно найти флуоресцентные чернила для ручек.

    Перейти в каталог светящихся красок и сувениров. Читать статьи о светящихся красках.

    Related Articles

    Как крепить пленку пароизоляционную пленку – Пароизоляционная пленка – что это такое, как работает, где используют, свойства, основные виды

    Содержание Как правильно крепить пароизоляционную пленкуКакой стороной нужно крепить пароизоляционную пленкуКак крепить пароизоляцию в процессе монтажаКак правильно выбирать пароизоляциюКакой стороной крепить пароизоляциюРазновидность изоляционных материалов и технология их устройстваМонтаж пленки в зависимости от ее типаПодготовка первичной основы для пароизоляционного материалаСамостоятельная укладка изоляционной пленкиОсобенности монтажа кровельной и стеновой пароизоляцииПравильная укладка пароизоляцииТипы изоляционного материала и способы крепленияОсобенности крепления […]
    Читать далее

    Отделка сэндвич панелями – Фасадные сэндвич панели для наружной отделки дома

    Содержание виды фасадной облицовки, проект отделки фасада дома и типы раскладкиОсобенностиПреимущества и недостаткиМатериал облицовкиУтеплителиУстановкаСоветыОтделка фасада сэндвич панелями — Облицовка внешних стен дома панелямиВиды и достоинства материалаПодготовка к облицовкеМонтаж панелейВидеоФасадные сэндвич панели с отделкой для быстрого строительства ?ОписаниеВидыОтличия по материалу облицовкиМеталлические многослойные панелиАлюминиевые сэндвич панелиМногослойные панели из древесно-полимерных плитОтличия по утеплителюПенополистиролМинеральная ватаОтличия по способу монтажаКлассическийПоэлементная сборкаОтделка фасада […]
    Читать далее

    Минвата плотность: минвата высокой и низкой плотности

    Содержание минвата высокой и низкой плотностиСодержание статьи о плотности минеральной ватыПлотность минватыПлотность утеплителя ИзоверУрса утеплитель плотностьПлотность утеплителя КнауфРоквул утеплитель плотностьКаталоги продукции и инструкции по монтажу ведущих производителейОб автореadminчто это и как ее выбрать?Что такое плотность минеральной ваты и на что она влияет?Плотность минваты в зависимости от назначения ROXUL Высокотемпературная изоляция: минеральная вата, зеленая, 8 прибл. […]
    Читать далее

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Search for: